Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928215

RESUMEN

Citrate, which is obtained from oxaloacetate and acetyl-CoA by citrate synthase in mitochondria, plays a key role in both normal and cancer cell metabolism. In this work, we investigated the effect of 10 mM extracellular citrate supplementation on HepG2 cells. Gene expression reprogramming was evaluated by whole transcriptome analysis using gene set enrichment analysis (GSEA). The transcriptomic data were validated through analyzing changes in the mRNA levels of selected genes by qRT-PCR. Citrate-treated cells exhibited the statistically significant dysregulation of 3551 genes; 851 genes were upregulated and 822 genes were downregulated. GSEA identified 40 pathways affected by differentially expressed mRNAs. The most affected biological processes were related to lipid and RNA metabolism. Several genes of the cytochrome P450 family were upregulated in treated cells compared to controls, including the CYP3A5 gene, a tumor suppressor in hepatocellular carcinoma (HCC) that plays an important protective role in HCC metastasis. The citrate-induced dysregulation of cytochromes could both improve the effectiveness of chemotherapeutics used in combination and reduce the aggressiveness of tumors by diminishing cell migration and invasion.


Asunto(s)
Movimiento Celular , Ácido Cítrico , Regulación Neoplásica de la Expresión Génica , Humanos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Hep G2 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Cítrico/farmacología , Ácido Cítrico/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Invasividad Neoplásica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Transcriptoma , Perfilación de la Expresión Génica
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125969

RESUMEN

To date, not many studies have presented evidence of SARS-CoV-2 infecting the female reproductive system. Furthermore, so far, no effect of the administration of anti-COVID 19 vaccines has been reported to affect the quality of oocytes retrieved from women who resorted to assisted reproduction technology (ART). The FF metabolic profiles of women who had been infected by SARS-CoV-2 before IVF treatments or after COVID-19 vaccination were examined by 1H NMR. Immunochemical characterization of proteins and cytokines involved in the redox and inflammatory pathways was performed. The increased expression of SOD2 and NQO1, the lack of alteration of IL-6 and CXCL10 levels, as well as the increased expression of CD39, suggested that, both sharing similar molecular mechanisms or proceeding along different routes, the redox balance is controlled in the FF of both vaccinated and recovered women compared to controls. The lower amount of metabolites known to have proinflammatory activity, i.e., TMAO and lipids, further supported the biochemical results, suggesting that the FF microenvironment is controlled so as to guarantee oocyte quality and does not compromise the outcome of ART. In terms of the number of blastocysts obtained after ICSI and the pregnancy rate, the results are also comforting.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Líquido Folicular , Metabolómica , Oxidación-Reducción , SARS-CoV-2 , Humanos , Femenino , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/metabolismo , Líquido Folicular/metabolismo , Adulto , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Embarazo , Metabolómica/métodos , Superóxido Dismutasa/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Vacunación , Antígenos CD/metabolismo , Metaboloma , Apirasa
3.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256207

RESUMEN

Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample's behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular ß-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Péptidos , alfa-Sinucleína , alfa-Sinucleína/genética , Hidrocarburos Aromáticos con Puentes , Retículo Endoplásmico , Péptidos/farmacología , Seudogenes , Humanos , Células Hep G2 , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
4.
Biol Res ; 56(1): 33, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37344914

RESUMEN

BACKGROUND: Voltage-dependent anion selective channels (VDACs) are the most abundant mitochondrial outer membrane proteins, encoded in mammals by three genes, VDAC1, 2 and 3, mostly ubiquitously expressed. As 'mitochondrial gatekeepers', VDACs control organelle and cell metabolism and are involved in many diseases. Despite the presence of numerous VDAC pseudogenes in the human genome, their significance and possible role in VDAC protein expression has not yet been considered. RESULTS: We investigated the relevance of processed pseudogenes of human VDAC genes, both in physiological and in pathological contexts. Using high-throughput tools and querying many genomic and transcriptomic databases, we show that some VDAC pseudogenes are transcribed in specific tissues and pathological contexts. The obtained experimental data confirm an association of the VDAC1P8 pseudogene with acute myeloid leukemia (AML). CONCLUSIONS: Our in-silico comparative analysis between the VDAC1 gene and its VDAC1P8 pseudogene, together with experimental data produced in AML cellular models, indicate a specific over-expression of the VDAC1P8 pseudogene in AML, correlated with a downregulation of the parental VDAC1 gene.


Asunto(s)
Leucemia Mieloide Aguda , Seudogenes , Canales Aniónicos Dependientes del Voltaje , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mitocondrias , Seudogenes/genética , Transcriptoma , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
5.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003580

RESUMEN

There is growing evidence that various ATP-binding cassette (ABC) transporters contribute to the growth and development of tumors, but relatively little is known about how the ABC transporter family behaves in hepatocellular carcinoma (HCC), one of the most common cancers worldwide. Cellular model studies have shown that ABCC6, which belongs to the ABC subfamily C (ABCC), plays a role in the cytoskeleton rearrangement and migration of HepG2 hepatocarcinoma cells, thus highlighting its role in cancer biology. Deep knowledge on the molecular mechanisms underlying the observed results could provide therapeutic insights into the tumors in which ABCC6 is modulated. In this study, differential expression levels of mRNA transcripts between ABCC6-silenced HepG2 and control groups were measured, and subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Real-Time PCR and Western blot analyses confirmed bioinformatics; functional studies support the molecular mechanisms underlying the observed effects. The results provide valuable information on the dysregulation of fundamental cellular processes, such as the focal adhesion pathway, which allowed us to obtain detailed information on the active role that the down-regulation of ABCC6 could play in the biology of liver tumors, as it is involved not only in cell migration but also in cell adhesion and invasion.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato
6.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430920

RESUMEN

Epidemiological studies have postulated an inverse correlation between developing cancer and neurodegeneration. It is known that the secretome plays a vital role in cell-cell communication in health and disease; the microglia is the resident macrophage of the central nervous system which maintains neuronal integrity by adapting as the microenvironment changes. The present study aimed to identify, in a cell model, biomarkers that link neurodegenerative diseases to cancer or vice versa. Real-time PCR and western blot analysis were used to characterize the effects on gene and protein expression of human hepatoblastoma (HepG2) and human microglia (HMC-III) cells after exchanging part of their conditioned medium. Biomarkers of the endoplasmic reticulum, and mitophagy and inflammatory processes were evaluated. In both cell types, we observed the activation of cytoprotective mechanisms against any potential pro-oxidant or pro-inflammatory signals present in secretomes. In contrast, HepG2 but not HMC-III cells seem to trigger autophagic processes following treatment with conditioned medium of microglia, thus suggesting a cell-specific adaptive response.


Asunto(s)
Fenómenos Fisiológicos Celulares , Microglía , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Microglía/metabolismo , Biomarcadores/metabolismo , Expresión Génica
7.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799762

RESUMEN

Pseudoxanthoma elasticum (PXE) is a complex autosomal recessive disease caused by mutations of ABCC6 transporter and characterized by ectopic mineralization of soft connective tissues. Compared to the other ABC transporters, very few studies are available to explain the structural components and working of a full ABCC6 transporter, which may provide some idea about its physiological role in humans. Some studies suggest that mutations of ABCC6 in the liver lead to a decrease in some circulating factor and indicate that PXE is a metabolic disease. It has been reported that ABCC6 mediates the efflux of ATP, which is hydrolyzed in PPi and AMP; in the extracellular milieu, PPi gives potent anti-mineralization effect, whereas AMP is hydrolyzed to Pi and adenosine which affects some cellular properties by modulating the purinergic pathway. Structural and functional studies have demonstrated that silencing or inhibition of ABCC6 with probenecid changed the expression of several genes and proteins such as NT5E and TNAP, as well as Lamin, and CDK1, which are involved in cell motility and cell cycle. Furthermore, a change in cytoskeleton rearrangement and decreased motility of HepG2 cells makes ABCC6 a potential target for anti-cancer therapy. Collectively, these findings suggested that ABCC6 transporter performs functions that modify both the external and internal compartments of the cells.


Asunto(s)
Hepatocitos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Neoplasias/genética , Seudoxantoma Elástico/genética , Animales , Antineoplásicos/uso terapéutico , Resistencia a Medicamentos/genética , Células Hep G2 , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Seudoxantoma Elástico/metabolismo
8.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918053

RESUMEN

Quercetin is a member of the flavonoid group of compounds, which is abundantly present in various dietary sources. It has excellent antioxidant properties and anti-inflammatory activity and is very effective as an anti-cancer agent against various types of tumors, both in vivo and in vitro. Quercetin has been also reported to modulate the activity of some members of the multidrug-resistance transporters family, such as P-gp, ABCC1, ABCC2, and ABCG2, and the activity of ecto-5'-nucleotidase (NT5E/CD73), a key regulator in some tumor processes such as invasion, migration, and metastasis. In this study, we investigated the effect of Quercetin on ABCC6 expression in HepG2 cells. ABCC6 is a member of the superfamily of ATP-binding cassette (ABC) transporters, poorly involved in drug resistance, whose mutations cause pseudoxanthoma elasticum, an inherited disease characterized by ectopic calcification of soft connective tissues. Recently, it has been reported that ABCC6 contributes to cytoskeleton rearrangements and HepG2 cell motility through purinergic signaling. Gene and protein expression were evaluated by quantitative Reverse-Transcription PCR (RT-qPCR) and western blot, respectively. Actin cytoskeleton dynamics was evaluated by laser confocal microscopy using fluorophore-conjugated phalloidin. Cell motility was analyzed by an in vitro wound-healing migration assay. We propose that ABCC6 expression may be controlled by the AKT pathway as part of an adaptative response to oxidative stress, which can be mitigated by the use of Quercetin-like flavonoids.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Quercetina/farmacología , Actinas/metabolismo , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Multimerización de Proteína/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Molecules ; 26(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466890

RESUMEN

Muscari comosum L. bulbs are commonly used as food in South Italy and also in folk medicine. By evaluating in vitro antioxidant activity and biological activities of their aqueous and methanol extracts, we shed light on the potential role, including both the nutraceutical and health benefits, of this plant. Total polyphenol content (TPC) and total flavonoid content (TFC) were evaluated by the Folin-Ciocalteu method and by the aluminum chloride method, respectively. Antioxidant activity was investigated by three in vitro assays and relative antioxidant capacity index (RACI) was calculated to compare results obtained by different tests. The extracts were tested to evaluate their possible involvement in redox homeostasis, using the human hepatoma (HepG2) cell line used as model. The extracts exhibited concentration/solvent dependent radical scavenging activity, as well as dysregulation of some genes involved in redox pathways by promoting Nrf2, SOD-2, GPX1, ABCC6 and ABCG2 expression. NMR metabolomics analysis suggests that HepG2 cells treated with Muscari comosum extracts experience changes in some metabolites involved in various metabolic pathways.


Asunto(s)
Antioxidantes/farmacología , Asparagaceae/química , Flavonoides/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Proliferación Celular , Flavonoides/análisis , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Metaboloma/efectos de los fármacos , Polifenoles/análisis
10.
Pharmacol Res ; 155: 104689, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32057895

RESUMEN

During the latest decades, the interest on the effectiveness of natural compounds and their impact on human health constantly increased, especially on those demonstrating to be effective on cancer. Molecules coming from nature are currently used in chemotherapy like Taxol, Vincristine or Vinblastine, and several other natural substances have been showed to be active in reducing cancer cell progression and migration. Among them, astaxanthin, a xanthophyll red colored carotenoid, displayed different biological activities including, antinflammatory, antioxidant, proapoptotic, and anticancer effects. It can induce apoptosis through downregulation of antiapoptotic protein (Bcl-2, p-Bad, and survivin) expression and upregulation of proapoptotic ones (Bax/Bad and PARP). Thanks to these mechanisms, it can exert anticancer effects towards colorectal cancer, melanoma, or gastric carcinoma cell lines. Moreover, it possesses antiproliferative activity in many experimental models and enhances the effectiveness of conventional chemotherapic drugs on tumor cells underling its potential future use. This review provides an overview of the current knowledge on the anticancer potential of astaxanthin by modulating several molecular targets. While it has been clearly demonstrated its multitarget activity in the prevention and regression of malignant cells in in vitro or in preclinical investigations, further clinical studies are needed to assess its real potential as anticancer in humans.


Asunto(s)
Antineoplásicos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Xantófilas/farmacología , Xantófilas/uso terapéutico
11.
Arch Gynecol Obstet ; 302(3): 741-751, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32462220

RESUMEN

INTRODUCTION: The main goal of this retrospective cohort study is the assessment of the effects of administration of recombinant-hCG (r-hCG) versus urinary-hCG (u-hCG) on follicular fluid (FF) composition of women who underwent in vitro fertilization (IVF) treatments. MATERIALS AND METHODS: We selected 70 patients with infertility attributable to tubal diseases, unexplained infertility, and male factor. Metabolomics analysis of their FFs was performed by 1H nuclear magnetic resonance (1H NMR) spectroscopy in combination with multivariate analysis to interpret the spectral data. Univariate statistical analysis was applied to investigate the possible correlations between clinical parameters and between clinical parameters and metabolites identified by NMR. RESULTS: According to the type of hCG used, significant differences were detected in FFs of women with male factor and unexplained infertility, both in qualitative and quantitative terms, for some metabolites as cholesterol, citrate, creatine, ß-hydroxybutyrate, glycerol, lipids, amino acids (Glu, Gln, His, Val, Lys) and glucose. No significant difference was observed in women with tubal diseases. Besides, the number of MII oocytes in the u-hCG-treated groups correlates positively with glutamate in tubal disease and with glycerol in unexplained infertility. In the r-hCG-treated groups, the number of MII oocytes correlates positively with lipid in tubal disease, positively with citrate and negatively with glucose in male infertility. CONCLUSIONS: Metabolite composition of FF changes according to different type of hCG treatment and this can be related to oocyte development and subsequent outcome. According to the data of this study, different types of hCG should be used in relation to the diagnosis of infertility to obtain better results in inducing oocyte maturation in women undergoing IVF.


Asunto(s)
Gonadotropina Coriónica/metabolismo , Fertilización In Vitro/métodos , Líquido Folicular/metabolismo , Metabolómica/métodos , Inducción de la Ovulación/métodos , Adulto , Femenino , Humanos , Proyectos Piloto , Estudios Retrospectivos
12.
Metabolomics ; 15(2): 19, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30830455

RESUMEN

INTRODUCTION: Several metabolomics studies have correlated follicular fluid (FF) metabolite composition with oocyte competence to fertilization, embryo development and pregnancy but there is a scarcity of research examining the metabolic effects of various gynaecological diseases. OBJECTIVES: In this study we aimed to analyze and correlate the metabolic profile of FF from women who were following in vitro fertilization (IVF) treatments with their different infertility pathologies. METHODS: We selected 53 women undergoing IVF who were affected by: tubal diseases, unexplained infertility, endometriosis, polycystic ovary syndrome (PCOS). FF of the study participants was collected at the time of oocytes retrieval. Metabolomic analysis of FF was performed by nuclear magnetic resonance (NMR) spectroscopy. RESULTS: FF presents some significant differences in various infertility pathologies. Although it was not possible to discriminate between FF of control participants and women with tubal diseases and unexplained infertility, comparison of FF metabolic profile from control women with patients with endometriosis and PCOS revealed significant differences in some metabolites that can be correlated to the causes of infertility. CONCLUSION: NMR-based metabolic profiling may be successfully applied to find diagnostic biomarkers for PCOS and endometriosis and it might be also used to predict oocyte developmental potential and subsequent outcome.


Asunto(s)
Líquido Folicular/citología , Líquido Folicular/metabolismo , Infertilidad Femenina/etiología , Adulto , Endometriosis/metabolismo , Femenino , Fertilización In Vitro/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Metaboloma/fisiología , Metabolómica/métodos , Oocitos/metabolismo , Inducción de la Ovulación/métodos , Proyectos Piloto , Síndrome del Ovario Poliquístico/metabolismo , Embarazo
13.
Biol Cell ; 110(7): 147-158, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29704455

RESUMEN

BACKGROUND INFORMATION: Up-regulated Gene clone 7 (URG7) is an ER resident protein, whose expression is up-regulated in the presence of hepatitis B virus X antigen (HBxAg) during HBV infection. In virus-infected hepatocytes, URG7 shows an anti-apoptotic activity due to the PI3K/AKT signalling activation, does not seem to have tumorigenic properties, but it appears to promote the development and progression of fibrosis. However, the molecular mechanisms underlying URG7 activity remain largely unknown. RESULTS: To shed light on URG7 activity, we first analysed its interactome in HepG2 transfected cells: this analysis suggests that URG7 could have a role in affecting protein synthesis, folding and promoting proteins degradation. Moreover, keeping into account its subcellular localisation in the ER and that several viral infections give rise to ER stress, a panel of experiments was performed to evaluate a putative role of URG7 in ER stress. Our main results demonstrate that in ER-stressed cells URG7 is able to modulate the expression of Unfolded Protein Response (UPR) markers towards survival outcomes, up-regulating GRP78 protein and down-regulating the pro-apoptotic protein CHOP. Furthermore, URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing Caspase 3 activation. CONCLUSIONS: All together these data suggest that URG7 plays a pivotal role as a reliever of ER stress-induced apoptosis. SIGNIFICANCE: This is the first characterisation of URG7 activity under ER stress conditions. The results presented here will help to hypothesise new strategies to counteract the antiapoptotic activity of URG7 in the context of the viral infection.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular/patología , Estrés del Retículo Endoplásmico , Neoplasias Hepáticas/patología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Factor de Transcripción CHOP/metabolismo , Carcinoma Hepatocelular/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteoma/análisis , Proteómica/métodos , Células Tumorales Cultivadas , Ubiquitinación , Respuesta de Proteína Desplegada
14.
Zygote ; 26(6): 476-484, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30561293

RESUMEN

During follicular development, granulosa cells undergo functional and structural changes affecting their steroidogenic activity. Oestrogen synthesis mainly occurs in the endoplasmic reticulum and relies on aromatase activity to convert androgens that arise from theca cells. In the present study, indicators of mitochondria-related steroidogenic capacity, as steroidogenic acute regulatory (StAR) protein expression and mitochondrial membrane potential (MMP), have been evaluated in bovine granulosa cells (GCs) and related to follicle growth and atresia. Atresia was estimated by morphological examination of follicle walls and cumulus-oocyte complexes (COC) and assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay for apoptosis detection. Bovine ovarian follicles were macroscopically classified according to their atresia grade and grouped into small, medium or large follicles. After follicle opening, the COCs were morphologically classified for follicle atresia and the GCs were collected. Granulosa cells were fixed for immunofluorescence (IF) and TUNEL assay, frozen for western blotting (WB) or freshly maintained for MMP analyses. StAR protein expression was assessed using both IF and WB analyses. The follicle atresia grade could be efficiently discriminated based on either follicle wall or COC morphological evaluations. Granulosa cells collected from small non-atretic follicles showed a higher (P <0.01) MMP and WB-based StAR protein expression than small atretic follicles. For IF analysis, StAR protein expression in large atretic follicles was higher (P <0.05) than that in large non-atretic follicles. These results suggest a role played by mitochondria in GC steroidogenic activity, which declines in healthy follicles along with their growth. In large follicles, steroidogenic activity increases with atresia and is possibly associated with progesterone production.

15.
J Assist Reprod Genet ; 35(11): 2063-2070, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30069850

RESUMEN

PURPOSE: The purpose of this study was to evaluate the possible application of metabolomics to identify follicular fluid changes in cancer patients undergoing fertility preservation. Although metabolomics have been applied already in cancer studies, this is the first application on follicular fluid of cancer patients. METHODS: We selected for the study ten patients with breast cancer and lymphoma who resorted to oocyte cryopreservation to preserve fertility and ten healthy women undergoing in vitro fertilization treatments. Follicular fluid was collected at the time of oocytes retrieval. Metabolomic analysis of follicular fluids was performed by 1H-nuclear magnetic resonance (NMR) spectroscopy in combination with multivariate analysis to interpret the spectral data. Univariate statistical analysis was applied to find correlations between patients' features and metabolites identified by NMR. RESULTS: Partial least squares discriminant analysis allowed to discriminate samples from cancer patients and healthy controls. Univariate statistical analysis found significant correlations between patients' features and metabolites identified by NMR. This finding allowed to identify biomarkers to differentiate both healthy controls from cancer patients and the two different classes of oncological patients. CONCLUSION: The follicular fluids of cancer patients display significant metabolic alterations in comparison to healthy subjects. NMR-based metabolomics could be a valid prognostic tool for identifying and selecting the best cryopreserved oocytes and improving the outcome prediction in cancer women undergoing in vitro fertilization.


Asunto(s)
Biomarcadores/metabolismo , Neoplasias de la Mama/metabolismo , Preservación de la Fertilidad , Líquido Folicular/metabolismo , Linfoma/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Metabolómica , Adulto , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Femenino , Humanos , Linfoma/patología , Adulto Joven
16.
Molecules ; 23(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486448

RESUMEN

Background: Adansonia digitata L. (Malvaceae), also known as baobab, is a tree attracting recent interest especially due to the high nutritional value of the fruit pulp. However, few studies are reported on the secondary metabolite content, showing high variability depending on the geographic region. METHODS: In this study, the chemical profiles of Malian commercial baobab fruits and leaves, focused on phenolic content, were investigated by HPLC coupled with a photodiode array (PDA)/UV and an electrospray ionization (ESI) mass spectrometer (MS) and gas chromatography (GC)/MS. In addition, the extracts of fruit pulps obtained from three different markets (Fruits 1, 2, and 3) were evaluated for their total phenolic content (TPC), antioxidant activity and α-glucosidase inhibition. RESULTS: Baobab fruit pulps were found to be rich in procyanidins and flavonol glycosides, with tiliroside as the major constituent. The baobab leaves showed a similar profile respect to the fruits, but with more detected phenolics. All fruit pulp extracts exerted antioxidant activity (highest for Fruit 3) and higher α-glucosidase inhibition than acarbose used as standard. CONCLUSIONS: This study confirmed the variability of baobab with different origins and indicated Malian species baobab as a promising source of health-promoting substances.


Asunto(s)
Adansonia/química , Depuradores de Radicales Libres/química , Frutas/química , Hipoglucemiantes/química , Hojas de la Planta/química , Humanos , Malí
17.
Cell Mol Biol Lett ; 22: 7, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28536638

RESUMEN

BACKGROUND: Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. METHODS: Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. RESULTS: To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21Cip p53 independent; and 4) downregulation of lamin A/C. CONCLUSIONS: These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.


Asunto(s)
Senescencia Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Estrés Oxidativo , Seudoxantoma Elástico/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/fisiopatología , Regulación hacia Arriba
18.
J Bioenerg Biomembr ; 48(3): 259-67, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26942607

RESUMEN

ABCC6 is a human ATP binding cassette (ABC) transporter of the plasma membrane associated with Pseudoxanthoma elasticum (PXE), an autosomal recessive disease characterized by ectopic calcification of elastic fibers in dermal, ocular and vascular tissues. Similar to other ABC transporters, ABCC6 encloses the core structure of four domains: two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) but also an additional N-terminal extension, including a transmembrane domain (TMD0) and a cytosolic loop (L0), which is only found in some members of ABCC subfamily, and for which the function remains to be established. To investigate the functional roles of this N-terminal region, we generated several domain deletion constructs of ABCC6, expressed in HEK293 and polarized LLC-PK1 cells. ABCC6 lacking TMD0 displayed full transport activity as the wild type protein. Unlike the wild type protein, ABCC6 without L0 was not targeted to the basolateral membrane. Moreover, homology modeling of L0 suggests that it forms an ATPase regulatory domain. Furthermore, we show that the expression of ABCC6 is linked to a cellular influx of Ca(2+). The results suggest that TMD0 is not required for transport function and that L0 maintains ABCC6 in a targeting-competent state for the basolateral membrane and might be involved in regulating the NBDs. These findings shed new light on a possible physiological function of ABCC6 and may explain some of the hallmarks of the clinical features associated with PXE that could contribute to the identification of novel pharmacological targets.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Fragmentos de Péptidos/fisiología , Dominios Proteicos/fisiología , Animales , Transporte Biológico Activo , Calcio/metabolismo , Polaridad Celular , Células HEK293 , Humanos , Células LLC-PK1 , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Seudoxantoma Elástico/tratamiento farmacológico , Porcinos
19.
J Pept Sci ; 21(5): 400-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25424319

RESUMEN

Experimental vaccination to induce antibodies (Abs) capable of cytokine antagonism shows promise as a novel immunotherapy for chronic inflammatory disease. We prepared a hybrid antigen consisting of residues 141-235 of rat TNF-α fused to the C-terminus of glutathione-S-transferase (GST), chemically modified to incorporate aldehyde residues, for development of an auto-vaccine eliciting anti-rTNF-α Abs. In rat immunization the soluble aldehyde-modified fusion protein did not generate observable Ab responses. By contrast, vaccination with the aldehyde-modified fusion protein adsorbed on alum induced anti-TNF-α autoAbs with high titer and neutralizing activity. Induction of adjuvant arthritis in rats pre-immunized with unmodified fusion protein or a control protein in alum resulted in severe inflammation and joint damage, whereas the disease induced in rats immunized with the aldehyde-bearing fusion protein in alum was markedly attenuated. Similar results were obtained in a collagen-induced rat arthritis model. Anti-collagen II IgG Ab titers did not deviate significantly in groups pre-immunized with modified fusion protein and control protein, suggesting that anti-TNF vaccination did not skew the immune response related to disease induction. This study demonstrates synergy between particulate alum and protein bound carbonyl residues for enhancement of protein immunogenicity. The antigen-specific co-adjuvant system could prove advantageous for breaking tolerance in emerging auto-vaccination therapies targeting inflammatory cytokines as well as for enhancing a broader category of subunit vaccines. Aldehyde adduction introduces a minimal modification which, together with the established use of alum as a safe adjuvant for human use, could be favorable for further vaccine development.


Asunto(s)
Aldehídos/química , Compuestos de Alumbre/administración & dosificación , Artritis Experimental/prevención & control , Glutatión Transferasa/genética , Factor de Necrosis Tumoral alfa/genética , Vacunas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre/farmacología , Animales , Artritis Experimental/inmunología , Autoanticuerpos/metabolismo , Colágeno , Glutatión Transferasa/química , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Factor de Necrosis Tumoral alfa/química , Vacunación/métodos , Vacunas/química , Vacunas/inmunología
20.
Biochem Biophys Res Commun ; 450(4): 1587-92, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25034329

RESUMEN

Experimental tools to determine membrane topology of a protein are rather limited in higher eukaryotic organisms. Here, we report the use of glycosylatable GFP (gGFP) as a sensitive and versatile membrane topology reporter in mammalian cells. gGFP selectively loses its fluorescence upon N-linked glycosylation in the ER lumen. Thus, positive fluorescence signal assigns location of gGFP to the cytosol whereas no fluorescence signal and a glycosylated status of gGFP map the location of gGFP to the ER lumen. By using mammalian gGFP, the membrane topology of disease-associated membrane proteins, URG7, MRP6102, SP-C(Val) and SP-C(Leu) was confirmed. URG7 is partially targeted to the ER, and inserted in Cin form. MRP6102 and SP-C(Leu/Val) are inserted into the membrane in Cout form. A minor population of untargeted SP-C is removed by proteasome dependent quality control system.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Glicosilación , Humanos , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA