RESUMEN
Widespread release of norepinephrine (NE) throughout the forebrain fosters learning and memory via adrenergic receptor (AR) signaling, but the molecular mechanisms are largely unknown. The ß2 AR and its downstream effectors, the trimeric stimulatory Gs-protein, adenylyl cyclase (AC), and the cAMP-dependent protein kinase A (PKA), form a unique signaling complex with the L-type Ca2+ channel (LTCC) CaV1.2. Phosphorylation of CaV1.2 by PKA on Ser1928 is required for the upregulation of Ca2+ influx on ß2 AR stimulation and long-term potentiation induced by prolonged theta-tetanus (PTT-LTP) but not LTP induced by two 1-s-long 100-Hz tetani. However, the function of Ser1928 phosphorylation in vivo is unknown. Here, we show that S1928A knock-in (KI) mice of both sexes, which lack PTT-LTP, express deficiencies during initial consolidation of spatial memory. Especially striking is the effect of this mutation on cognitive flexibility as tested by reversal learning. Mechanistically, long-term depression (LTD) has been implicated in reversal learning. It is abrogated in male and female S1928A knock-in mice and by ß2 AR antagonists and peptides that displace ß2 AR from CaV1.2. This work identifies CaV1.2 as a critical molecular locus that regulates synaptic plasticity, spatial memory and its reversal, and LTD.SIGNIFICANCE STATEMENT We show that phosphorylation of the Ca2+ channel CaV1.2 on Ser1928 is important for consolidation of spatial memory and especially its reversal, and long-term depression (LTD). Identification of Ser1928 as critical for LTD and reversal learning supports the model that LTD underlies flexibility of reference memory.
Asunto(s)
Plasticidad Neuronal , Memoria Espacial , Ratones , Masculino , Femenino , Animales , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Transducción de Señal , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Hipocampo/fisiologíaRESUMEN
Meningococcal chemoprophylaxis for people in close contact with patients with invasive meningococcal disease (IMD) is necessary for preventing the spread of Neisseria meningitidis. Ciprofloxacin (CIP) is commonly used to treat IMD. However, CIP-resistant N. meningitidis isolates have rapidly evolved worldwide; therefore, rapid and accurate detection of CIP-resistant N. meningitidis is essential. We developed a mismatch amplification mutation assay for identifying gyrA substitutions T91I and D95Y, associated with reduced CIP susceptibility, using two primer sets to detect these variants. Comparison with gyrA sequencing data showed complete congruency. This method enables reliable detection of CIP-resistant N. meningitidis, thus leading to efficient management and control of IMD infections.
Asunto(s)
Infecciones Meningocócicas , Neisseria meningitidis , Humanos , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Neisseria meningitidis/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Infecciones Meningocócicas/diagnóstico , Infecciones Meningocócicas/tratamiento farmacológico , MutaciónRESUMEN
PURPOSE: Uncontrollable bleeding remained problematic in anatomical hepatectomy exposing hepatic veins. Based on the inferior vena cava (IVC) anatomy, we attempted to analyze the hemodynamic and surgical effects of the combined IVC-partial clamp (PC) accompanied with the Trendelenburg position (TP). METHODS: We prospectively assessed 26 consecutive patients who underwent anatomical hepatectomies exposing HV trunks between 2020 and 2023. Patients were divided into three groups: use of IVC-PC (group 1), no use of IVC-PC (group 2), and use of IVC-PC accompanied with TP (group 3). In 10 of 26 patients (38%), hepatic venous pressure was examined using transhepatic catheter insertion. RESULTS: IVC-PC was performed in 15 patients (58%). Operating time and procedures did not significantly differ between groups. A direct hemostatic effect on hepatic veins was evaluated in 60% and 70% of patients in groups 1 and 3, respectively. Group 1 showed significantly more unstable vital status and vasopressor use (p < 0.01). Blood or fluid transfusion and urinary output were similar between groups. Group 2 had a significantly lower baseline central venous pressure (CVP), while group 3 showed a significant increase in CVP in TP. CVP under IVC-PC seemed lower than under TP; however, not significantly. Hepatic venous pressure did not significantly differ between groups. Systolic arterial blood pressure significantly decreased via IVC-PC in group 1 and to a similar extent in group 3. Heart rate significantly increased during IVC-PC (p < 0.05). CONCLUSION: IVC-PC combined with the TP may be an alternative procedure to control intrahepatic venous bleeding during anatomical hepatectomy exposing hepatic venous trunks.
Asunto(s)
Anestésicos , Vena Cava Inferior , Humanos , Vena Cava Inferior/cirugía , Hepatectomía/métodos , Constricción , Pérdida de Sangre Quirúrgica/prevención & controlRESUMEN
Klebsiella pneumoniae carbapenemase (KPC) producers are an emerging threat to global health, and the hospital water environment is considered an important reservoir of these life-threatening bacteria. We characterized plasmids of KPC-2-producing Citrobacter freundii and Klebsiella variicola isolates recovered from hospital sewage in Japan. Antimicrobial susceptibility testing, whole-genome sequencing analysis, bacterial conjugation, and transformation experiments were performed for both KPC-2 producers. The blaKPC-2 gene was located on the Tn3 transposon-related region from an IncP-6 replicon plasmid that could not be transferred via conjugation. Compared to the blaKPC-2-encoding plasmid of the C. freundii isolate, alignment analysis of plasmids with blaKPC-2 showed that the blaKPC-2-encoding plasmid of the K. variicola isolate was a novel IncP-6/IncF-like hybrid plasmid containing a 75,218-bp insertion sequence composed of IncF-like plasmid conjugative transfer proteins. Carbapenem-resistant transformants harboring blaKPC-2 were obtained for both isolates. However, no IncF-like insertion region was found in the K. variicola donor plasmid of the transformant, suggesting that this IncF-like region is not readily functional for plasmid conjugative transfer and is maintained depending on the host cells. The findings on the KPC-2 producers and novel genetic content emphasize the key role of hospital sewage as a potential reservoir of pathogens and its linked dissemination of blaKPC-2 through the hospital water environment. Our results indicate that continuous monitoring for environmental emergence of antimicrobial-resistant bacteria might be needed to control the spread of these infectious bacteria. Moreover, it will help elucidate both the evolution and transmission pathways of these bacteria harboring antimicrobial resistance. IMPORTANCE Antimicrobial resistance is a significant problem for global health, and the hospital environment has been recognized as a reservoir of antimicrobial resistance. Here, we provide insight into the genomic features of blaKPC-2-harboring isolates of Citrobacter freundii and Klebsiella variicola obtained from hospital sewage in Japan. The findings of carbapenem-resistant bacteria containing this novel genetic context emphasize that hospital sewage could act as a potential reservoir of pathogens and cause the subsequent spread of blaKPC-2 via horizontal gene transfer in the hospital water environment. This indicates that serial monitoring for environmental bacteria possessing antimicrobial resistance may help us control the spread of infection and also lead to elucidating the evolution and transmission pathways of these bacteria.
Asunto(s)
Citrobacter freundii , Aguas del Alcantarillado , Antibacterianos , Carbapenémicos , Citrobacter freundii/genética , Hospitales , Japón , Klebsiella , Plásmidos/genética , AguaRESUMEN
The emergence of daptomycin (DAP) resistant Enterococcus species has increased worldwide, but the mechanisms for DAP resistance are not fully understood. We report a case of DAP resistant Enterococcus faecalis, from a clinical sample of a patient with diabetic ulcers, after DAP therapy. Whole-genome sequencing analysis revealed that the isolate had a loss-of-function point mutation within liaX encoding DAP-sensing surface protein, which inhibits the LiaFSR systems and cell membrane remodeling. This is the first case report of a clinical DAP resistant E. faecalis with a mutation in liaX.
Asunto(s)
Daptomicina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Membrana Celular , Daptomicina/farmacología , Daptomicina/uso terapéutico , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/genética , Humanos , Proteínas de la Membrana , Pruebas de Sensibilidad Microbiana , Mutación/genéticaRESUMEN
Here, we assessed the utility of a polymerase chain reaction-based open reading frame typing assay for investigating the clonality of Clostridioides difficile isolates. This assay has a higher discriminatory power than multi-locus sequence typing for molecular epidemiological analysis of C. difficile isolates and can provide additional information about toxin genotypes.
Asunto(s)
Clostridioides difficile/clasificación , Clostridioides difficile/genética , Infecciones por Clostridium/diagnóstico , Infecciones por Clostridium/microbiología , Tipificación de Secuencias Multilocus , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa , Clostridioides difficile/aislamiento & purificación , Humanos , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Juego de Reactivos para Diagnóstico , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Changing the primary metal coordination sphere is a powerful strategy for tuning metalloprotein properties. Here we used amber stop codon suppression with engineered pyrrolysyl-tRNA synthetases, including two newly evolved enzymes, to replace the proximal histidine in myoglobin with Nδ -methylhistidine, 5-thiazoylalanine, 4-thiazoylalanine and 3-(3-thienyl)alanine. In addition to tuning the heme redox potential over a >200â mV range, these noncanonical ligands modulate the protein's carbene transfer activity with ethyl diazoacetate. Variants with increased reduction potential proved superior for cyclopropanation and N-H insertion, whereas variants with reduced Eo values gave higher S-H insertion activity. Given the functional importance of histidine in many enzymes, these genetically encoded analogues could be valuable tools for probing mechanism and enabling new chemistries.
Asunto(s)
Hemo/metabolismo , Metaloproteínas/metabolismo , Metano/análogos & derivados , Hemo/química , Ligandos , Metaloproteínas/química , Metano/química , Metano/metabolismoRESUMEN
A carbon dioxide-dependent small-colony variant of Escherichia coli SH4888 was isolated from blood cultures of a patient with cholangitis. To date, little is known regarding the molecular mechanisms leading to formation of carbon dioxide-dependent phenotypes in clinical isolates, but abnormalities in the carbonic anhydrase are thought to cause carbon dioxide autotrophy. In this study DNA sequence analysis of the carbonic anhydrase-encoding can locus in the carbon dioxide-dependent E. coli SH4888 revealed that the isolate had a 325-bp deletion spanning from the 3'-terminal region of can to the 3'-terminal region of hpt, which encodes a hypoxanthine phosphoribosyltransferase. To confirm that the carbon dioxide-dependent SCV phenotype of E. coli SH4888 was due to the can mutation, we performed a complementation test with a plasmid carrying an intact can that restored the normal phenotype. However, E. coli SH4888 had increased virulence compared to the can-complemented E. coli SH4888 in a murine infection model. In conclusion, these data confirm that impaired carbonic anhydrase function can cause a carbon dioxide-dependent SCV phenotype in E. coli SH4888 and provides a fitness advantage in terms of infection.
Asunto(s)
Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Anciano , Animales , Cultivo de Sangre , Colangitis/microbiología , Farmacorresistencia Bacteriana , Genes Bacterianos , Prueba de Complementación Genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Viabilidad Microbiana/genética , Mutación , Análisis de Secuencia de ADNRESUMEN
The hippocampus plays an essential role in the formation and retrieval of episodic memories in humans and contextual memories in animals. However, amnesia is not always observed when this structure is compromised. To determine why this is the case, we compared the effects of several different circuit manipulations on memory retrieval and hippocampal activity. Mice were first trained on context fear conditioning and then optogenetic and chemogenetic tools were used to alter activity during memory retrieval. We found that retrieval was only impaired when manipulations caused widespread changes (increases or decreases) in hippocampal activity. Widespread increases occurred when pyramidal cells were excited and widespread decreases were found when GABAergic neurons were stimulated. Direct hyperpolarization of excitatory neurons only moderately reduced activity and did not produce amnesia. Surprisingly, widespread decreases in hippocampal activity did not prevent retrieval if they occurred gradually prior to testing. This suggests that intact brain regions can express contextual memories if they are given adequate time to compensate for the loss of the hippocampus.
Asunto(s)
Amnesia/fisiopatología , Condicionamiento Psicológico/fisiología , Miedo , Hipocampo/fisiopatología , Recuerdo Mental/fisiología , Animales , Drogas de Diseño , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Hipocampo/citología , Memoria Episódica , Ratones , Optogenética , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptores de DrogaRESUMEN
Despite the significant progress of the enantioselective reaction using chiral catalysts, the enantioselective nucleophilic substitution reaction at the chiral sp3 -hybridized carbon atom of a racemic electrophile has not been largely explored. Herein, we report the enantioconvergent propargylic substitution reaction of racemic propargylic alcohols with thiols using chiral bis-phosphoric acid as the chiral Brønsted acid catalyst. The substitution products were formed in high yields with high enantioselectivities in most cases. The cation-stabilizing effect of the sulfur functional group introduced at the alkynyl terminus is the key to achieving the efficient enantioconvergent process, in which chiral information originating from not only the racemic stereogenic center but also the formed contact ion pair is completely eliminated from the present system.
RESUMEN
p53 is a guardian of the genome that protects against carcinogenesis. There is accumulating evidence that p53 is activated with aging. Such activation has been reported to contribute to various age-associated pathologies, but its role in vascular dysfunction is largely unknown. The aim of this study was to investigate whether activation of endothelial p53 has a pathological effect in relation to endothelial function. We established endothelial p53 loss-of-function and gain-of-function models by breeding endothelial-cell specific Cre mice with floxed Trp53 or floxed Mdm2/Mdm4 mice, respectively. Then we induced diabetes by injection of streptozotocin. In the diabetic state, endothelial p53 expression was markedly up-regulated and endothelium-dependent vasodilatation was significantly impaired. Impairment of vasodilatation was significantly ameliorated in endothelial p53 knockout (EC-p53 KO) mice, and deletion of endothelial p53 also significantly enhanced the induction of angiogenesis by ischemia. Conversely, activation of endothelial p53 by deleting Mdm2/Mdm4 reduced both endothelium-dependent vasodilatation and ischemia-induced angiogenesis. Introduction of p53 into human endothelial cells up-regulated the expression of phosphatase and tensin homolog (PTEN), thereby reducing phospho-eNOS levels. Consistent with these results, the beneficial impact of endothelial p53 deletion on endothelial function was attenuated in EC-p53 KO mice with an eNOS-deficient background. These results show that endothelial p53 negatively regulates endothelium-dependent vasodilatation and ischemia-induced angiogenesis, suggesting that inhibition of endothelial p53 could be a novel therapeutic target in patients with metabolic disorders.
Asunto(s)
Endotelio Vascular/fisiopatología , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Isquemia/complicaciones , Isquemia/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Permeabilidad Capilar , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Endotelio Vascular/metabolismo , Eliminación de Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Activación Transcripcional/genética , Regulación hacia Arriba/genética , VasodilataciónRESUMEN
In nature, many complex structures are assembled from simple molecules by a series of tailored enzyme-catalyzed reactions. One representative example is the deoxypropionate motif, an alternately methylated alkyl chain containing multiple stereogenic centers, which is biosynthesized by a series of enzymatic reactions from simple building blocks. In organic synthesis, however, the majority of the reported routes require the syntheses of complex building blocks. Furthermore, multistep reactions with individual purifications are required at each elongation. Here we show the construction of the deoxypropionate structure from propylene in a single step to achieve a three-step synthesis of (2R,4R,6R,8R)-2,4,6,8-tetramethyldecanoic acid, a major acid component of a preen-gland wax of the graylag goose. To realize this strategy, we focused on the coordinative chain transfer polymerization and optimized the reaction condition to afford a stereo-controlled oligomer, which is contrastive to the other synthetic strategies developed to date that require 3-6 steps per unit, with unavoidable byproduct generation. Furthermore, multiple oligomers with different number of deoxypropionate units were isolated from one batch, showing application to the construction of library. Our strategy opens the door for facile synthetic routes toward other natural products that share the deoxypropionate motif.
RESUMEN
An enantioconvergent intramolecular Nicholas reaction of racemic diols was developed using BINOL- and SPINOL-derived phosphoric acids as the chiral Brønsted acid catalyst. The developed reaction features an efficient approach to the synthesis of seven-membered cyclic ethers in a highly enantioselective manner. Further derivatization of the enantioenriched cyclic ethers, initiated by the de-complexation of the dicobalt species, afforded densely functionalized cyclic ethers having an unsaturated diester moiety without loss of enantiomeric excess.
RESUMEN
Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid.
RESUMEN
Moderately isospecific homopolymerization of propylene and the copolymerization of propylene and polar monomers have been achieved with palladium complexes bearing a phosphine-sulfonate ligand. Optimization of substituents on the phosphorus atom of the ligand revealed that the presence of bulky alkyl groups (e.g. menthyl) is crucial for the generation of high-molecular-weight polypropylenes (Mw ≈10(4) ), and the substituent at the ortho-position relative to the sulfonate group influences the molecular weight and isotactic regularity of the obtained polypropylenes. Statistical analysis suggested that the introduction of substituents at the ortho-position relative to the sulfonate group favors enantiomorphic site control over chain end control in the chain propagation step. The triad isotacticity could be increased to mm=0.55-0.59, with formation of crystalline polar polypropylenes, as supported by the presence of melting points and sharp peaks in the corresponding X-ray diffraction patterns.
RESUMEN
In this study, the performance of MALDI-TOF MS was evaluated for the identification of clinical thymidine-dependent small-colony variants (TD-SCVs) of Staphylococcus aureus. We performed identification of a total of 15 S. aureus TD-SCVs by using biochemical tests, 16S rRNA gene sequencing and MALDI-TOF MS analysis. Although the biochemical method using MicroScan panels could not identify all isolates due to insufficient growth in the control well. MALDI Biotyper (Bruker Daltonics) could correctly identify all of them. Two sample preparation methods, the direct transfer-formic acid method and ethanol-formic acid method, for measurement by MALDI Biotyper made no difference in results. MALDI-TOF MS is useful identification of S. aureus TD-SCVs.
Asunto(s)
ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Infecciones Estafilocócicas/diagnóstico , Staphylococcus aureus , Técnicas Bacteriológicas/métodos , Humanos , Manejo de Especímenes/métodosRESUMEN
A series of palladium/alkylphosphine-sulfonate catalysts were synthesized and examined in the homopolymerization of ethylene and the copolymerization of ethylene and polar monomers. Catalysts with alkylphosphine-sulfonate ligands containing sterically demanding alkyl substituents afforded (co)polymers whose molecular weight was increased by up to 2 orders of magnitude relative to polymers obtained from previously reported catalyst systems. The polymer molecular weight was found to be closely correlated to the Sterimol B5 parameter of the alkyl substituents in the alkylphosphine-sulfonate ligands. Thus, the use of bulky alkylphosphine-sulfonate ligands represents an effective and versatile method to prepare high-molecular-weight copolymers of ethylene and various polar monomers, which are difficult to obtain by previously reported methods.
RESUMEN
Purpose: Colistin is classified by the World Health Organization (WHO) as a critically important and last-resort antibiotic for the treatment of infections caused by carbapenem-resistant bacteria. However, colistin resistance mediated by chromosomal mutations or plasmid-linked mobilized colistin resistance (mcr) genes has emerged. Methods: Thirteen mcr-positive Aeromonas species isolated from water samples collected in Eastern Ghana were analyzed using whole-genome sequencing (WGS). Antimicrobial susceptibility was tested using the broth microdilution method. Resistome analysis was performed in silico using a web-based platform. Results: The minimum inhibitory concentration (MIC) of colistin for all except three isolates was >4 µg/mL. Nine new sequence types were identified and whole-genome analysis revealed that the isolates harbored genes (mcr-3-related genes) that code for Lipid A phosphoethanolamine transferases on their chromosomes. BLAST analysis indicated that the amino acid sequences of the mcr-3-related genes detected varied from those previously reported and shared 79.04-99.86% nucleotide sequence identity with publicly available mcr-3 variants and mcr-3-related phosphoethanolamine transferases. Analysis of the genetic context of mcr-3-related genes revealed that the genetic environment surrounding mcr-3-related genes was diverse among the different species of Aeromonas but conserved among isolates of the same species. Mcr-3-related-gene-IS-mcr-3-related-gene segment was identified in three Aeromonas caviae strains. Conclusion: The presence of mcr-3-related genes close to insertion elements is important for continuous monitoring to better understand how to control the mobilization and dissemination of antibiotic resistance genes.
RESUMEN
Designing proteins that fold and assemble over different length scales provides a way to tailor the mechanical properties and biological performance of hydrogels. In this study, we designed modular proteins that self-assemble into fibrillar networks and, as a result, form hydrogel materials with novel properties. We incorporated distinct functionalities by connecting separate self-assembling (A block) and cell-binding (B block) domains into single macromolecules. The number of self-assembling domains affects the rigidity of the fibers and the final storage modulus G' of the materials. The mechanical properties of the hydrogels could be tuned over a broad range (G' = 0.1 - 10 kPa), making them suitable for the cultivation and differentiation of multiple cell types, including cortical neurons and human mesenchymal stem cells. Moreover, we confirmed the bioavailability of cell attachment domains in the hydrogels that can be further tailored for specific cell types or other biological applications. Finally, we demonstrate the versatility of the designed proteins for application in biofabrication as 3D scaffolds that support cell growth and guide their function. STATEMENT OF SIGNIFICANCE: Designed proteins that enable the decoupling of biophysical and biochemical properties within the final material could enable modular biomaterial engineering. In this context, we present a designed modular protein platform that integrates self-assembling domains (A blocks) and cell-binding domains (B blocks) within a single biopolymer. The linking of assembly domains and cell-binding domains this way provided independent tuning of mechanical properties and inclusion of biofunctional domains. We demonstrate the use of this platform for biofabrication, including neural cell culture and 3D printing of scaffolds for mesenchymal stem cell culture and differentiation. Overall, this work highlights how informed design of biopolymer sequences can enable the modular design of protein-based hydrogels with independently tunable biophysical and biochemical properties.
Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Humanos , Hidrogeles/química , Proteínas/química , Materiales Biocompatibles/metabolismo , Biopolímeros , Ingeniería de TejidosRESUMEN
Utility of a recently developed long-read pipeline, Emu, was assessed using an expectation-maximization algorithm for accurate read classification. We compared it to conventional short- and long-read pipelines, using well-characterized mock bacterial samples. Our findings highlight the necessity of appropriate data-processing for taxonomic descriptions, expanding our understanding of the precise microbiome.