Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Compr Rev Food Sci Food Saf ; 21(3): 2253-2273, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35430771

RESUMEN

Plastic pollution is a significant concern nowadays due to wastes generated from non-biodegradable and non-renewable synthetic materials. In particular, most plastic food packaging material ends up in landfills, creating mass wastes that clog the drainage system and pollute the ocean. Thus, studies on various biopolymers have been promoted to replace synthetic polymers in food packaging and consequently, the high number of research in biopolymers food packaging, especially in the characterization, properties and also the development of the biopolymer. For biopolymer-based food packaging, silk fibroin (SF) has been highlighted because of its biodegradability and low water vapor permeability properties. This review focuses on the different properties of SF films prepared through solution casting and electrospinning for food packaging. Discussions encompassed chemical properties, mechanical properties, permeability, and biodegradability. This review also discussed the studies that used SF as the biomaterial for food packaging.


Asunto(s)
Fibroínas , Materiales Biocompatibles/química , Biopolímeros/química , Fibroínas/química , Embalaje de Alimentos , Plásticos
2.
Polymers (Basel) ; 13(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502906

RESUMEN

Polymer nanocomposites with enhanced performances are becoming a trend in the current research field, overcoming the limitations of bulk polymer and meeting the demands of market and society in tribological applications. Polytetrafluoroethylene, poly(ether ether ketone) and ultrahigh molecular weight polyethylene are the most popular polymers in recent research on tribology. Current work comprehensively reviews recent advancements of polymer nanocomposites in tribology. The influence of different types of nanofiller, such as carbon-based nanofiller, silicon-based nanofiller, metal oxide nanofiller and hybrid nanofiller, on the tribological performance of thermoplastic and thermoset nanocomposites is discussed. Since the tribological properties of polymer nanocomposites are not intrinsic but are dependent on sliding conditions, direct comparison between different types of nanofiller or the same nanofiller of different morphologies and structures is not feasible. Friction and wear rate are normalized to indicate relative improvement by different fillers. Emphasis is given to the effect of nanofiller content and surface modification of nanofillers on friction, wear resistance, wear mechanism and transfer film formation of its nanocomposites. Limitations from the previous works are addressed and future research on tribology of polymer nanocomposites is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA