Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Xenotransplantation ; 31(1): e12831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37846880

RESUMEN

BACKGROUND: Porcine tissues display a great potential as donor tissues in xenotransplantation, including cell therapy. Cryopreserving clinical grade porcine tissue and using it as a source for establishing therapeutic cells should be advantageous for transportation and scheduled manufacturing of MSCs. Of note, we previously performed encapsulated porcine islet transplantation for the treatment of unstable type 1 diabetes mellitus in the clinical setting. It has been reported that co-transplantation of islets and Mesenchymal stem cells (MSCs) enhanced efficacy. We assume that co-transplantation of porcine islets and porcine islet-derived MSCs could improve the efficacy of clinical islet xenotransplantation. METHODS: MSCs were established from fresh and cryopreserved non-clinical grade neonatal porcine islets and bone marrow (termed non-clinical grade npISLET-MSCs and npBM-MSCs, respectively), as well as from cryopreserved clinical grade neonatal porcine islets (termed clinical grade npISLET-MSCs). Subsequently, the cell proliferation rate and diameter, surface marker expression, adipogenesis, osteogenesis, and colony-forming efficiency of the MSCs were assessed. RESULTS: Cell proliferation rate and diameter did not differ between clinical grade and non-clinical grade npISLET-MSCs. However, non-clinical grade npBM-MSCs were significantly shorter and smaller than both npISLET-MSCs (p < 0.05). MSC markers (CD29, CD44, and CD90) were strongly expressed in clinical grade npISLET-MSCs and non-clinical grade npISLET-MSCs and npBM-MSCs. The expression of MSC-negative markers CD31, CD34, and SLA-DR was low in all MSCs. Clinical grade npISLET-MSCs derived from adipose and osteoid tissues were positive for Oil Red and alkaline phosphatase staining. The results of colony-forming assay were not significantly different between clinical grade npISLET-MSCs and non-clinical grade npBM-MSCs. CONCLUSION: The method described herein was successful in of developing clinical grade npISLET-MSCs from cryopreserved islets. Cryopreserved clinical grade porcine islets could be an excellent stable source of MSCs for cell therapy.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Porcinos , Animales , Trasplante Heterólogo/métodos , Trasplante de Islotes Pancreáticos/métodos , Diabetes Mellitus Tipo 1/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos
2.
Reprod Domest Anim ; 59(6): e14648, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877771

RESUMEN

We evaluated the quality and fertilizing ability of frozen-thawed porcine sperm that were selected using a commercially available device (MIGLIS, Menicon Life Science) consisting of three parts: an outer lid, an inner lid, and a tube. Firstly, to determine an adequate concentration of caffeine for separation, frozen-thawed sperm were incubated with different concentrations of caffeine (0, 1, 2.5, 5, and 10 mM) in a MIGLIS device. To determine the appropriate incubation time for separating sperm in the MIGLIS device, frozen-thawed sperm were incubated with 2.5 mM caffeine for 5, 10, 15, or 20 min. To evaluate the fertilization and embryo development of oocytes fertilized with frozen-thawed sperm separated into two regions (outer and inner) in the MIGLIS device, the separated sperm from the three boars was used to fertilize in vitro-matured oocytes and cultured in vitro for 7 days. Sperm quality parameters of sperm collected from the inner tube after incubation with 2.5 mM caffeine were superior to sperm incubated without caffeine. Moreover, sperm collected from the inner tube after incubation for 10 min had a higher progressive motility. The rate of blastocyst produced from spermatozoa collected from the inner tube after incubation with 2.5 mM caffeine for 10 min significantly increased compared to that produced from spermatozoa from the outer tube, regardless of the boar. In conclusion, sperm sorting using the MIGLIS device may be useful for separating high-quality sperm after incubation with 2.5 mM caffeine for 10 min to improve blastocyst formation.


Asunto(s)
Cafeína , Criopreservación , Fertilización In Vitro , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Masculino , Cafeína/farmacología , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Fertilización In Vitro/veterinaria , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Femenino , Motilidad Espermática/efectos de los fármacos , Porcinos , Desarrollo Embrionario/efectos de los fármacos , Oocitos/efectos de los fármacos , Oocitos/fisiología , Blastocisto/efectos de los fármacos , Blastocisto/fisiología
3.
Reprod Domest Anim ; 59(1): e14520, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38268205

RESUMEN

Sterilization of the culture medium using ultraviolet (UV)-C reduces the potential adverse effects of microorganisms and allows for long-term use. In the present study, we investigated the effects of a medium directly irradiated with UV-C prior to in vitro culture on the development and quality of porcine in vitro-fertilized embryos and the free amino acid composition of the culture media. The culture media (porcine zygote medium [PZM-5] and porcine blastocyst medium [PBM]) were irradiated with UV-C at 228 and 260 nm for 1 and 3 days, respectively. Next, the culture media were irradiated with UV-C at 228 nm for 3, 7, or 14 days. After in vitro fertilization, the embryos were cultured in the UV-C-irradiated media for 7 days. Free amino acid levels in culture media irradiated with 228 and 260 nm UV-C for 3 days were analysed. The blastocyst formation rate of embryos cultured in media irradiated with 260 nm UV-C for 3 days was significantly lower than that of embryos cultured in non-irradiated control media. However, 228 nm UV-C irradiation for up to 14 days did not affect blastocyst formation rates and quality in the resulting blastocysts. Moreover, 260 nm UV-C irradiation significantly increased the taurine concentration in both culture media and decreased methionine concentration in the PBM. In conclusion, UV-C irradiation at 228 nm before in vitro culture had no detrimental effects on embryonic development. However, 260 nm UV-C irradiation decreased embryo development and altered the composition of free amino acids in the medium.


Asunto(s)
Aminoácidos , Desarrollo Embrionario , Animales , Femenino , Embarazo , Porcinos , Cigoto , Fertilización In Vitro/veterinaria , Medios de Cultivo
4.
Acta Vet Hung ; 71(3-4): 219-222, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193983

RESUMEN

This study examined the effects of ergothioneine (EGT) supplementation as an antioxidant on the quality of boar spermatozoa when using liquid and frozen preservation methods. In the first experiment, boar semen was preserved in an extender supplemented with 0, 50, 100 and 200 µM EGT, at 15 °C, part of the samples for one and another part for three weeks. In comparison with the control (without EGT), EGT supplementation at 100 µM significantly increased the percentage of total motility of spermatozoa that were preserved as a liquid both for one and three weeks (P < 0.05). EGT supplementation did not affect the quality of preserved spermatozoa, irrespective of the EGT concentration. In the second experiment, semen was frozen and thawed in the freezing extender supplemented with 0, 50, 100 and 200 µM EGT. In comparison with the control, the 100 µM EGT supplementation significantly increased the percentages of total and progressive motility of frozen-thawed spermatozoa (P < 0.05). EGT (100 µM) supplementation did not affect the viability, the plasma membrane integrity, or the acrosomal integrity of frozen-thawed spermatozoa. These findings indicate that supplementing extenders with 100 µM EGT may improve the motility of boar sperm in both liquid and freezing preservation methods.


Asunto(s)
Ergotioneína , Masculino , Porcinos , Animales , Ergotioneína/farmacología , Semen , Suplementos Dietéticos , Antioxidantes/farmacología , Espermatozoides
5.
Mol Biol Rep ; 50(6): 5049-5057, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37101010

RESUMEN

BACKGROUND: Pigs are excellent large animal models with several similarities to humans. They provide valuable insights into biomedical research that are otherwise difficult to obtain from rodent models. However, even if miniature pig strains are used, their large stature compared with other experimental animals requires a specific maintenance facility which greatly limits their usage as animal models. Deficiency of growth hormone receptor (GHR) function causes small stature phenotypes. The establishment of miniature pig strains via GHR modification will enhance their usage as animal models. Microminipig is an incredibly small miniature pig strain developed in Japan. In this study, we generated a GHR mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes derived from domestic porcine oocytes and microminipig spermatozoa. METHODS AND RESULTS: First, we optimized the efficiency of five guide RNAs (gRNAs) designed to target GHR in zygotes. Embryos that had been electroporated with the optimized gRNAs and Cas9 were then transferred into recipient gilts. After embryo transfer, 10 piglets were delivered, and one carried a biallelic mutation in the GHR target region. The GHR biallelic mutant showed a remarkable growth-retardation phenotype. Furthermore, we obtained F1 pigs derived from the mating of GHR biallelic mutant with wild-type microminipig, and GHR biallelic mutant F2 pigs through sib-mating of F1 pigs. CONCLUSIONS: We have successfully demonstrated the generation of biallelic GHR-mutant small-stature pigs. Backcrossing of GHR-deficient pig with microminipig will establish the smallest pig strain which can contribute significantly to the field of biomedical research.


Asunto(s)
Sistemas CRISPR-Cas , Cigoto , Masculino , Humanos , Porcinos/genética , Animales , Femenino , Sistemas CRISPR-Cas/genética , Receptores de Somatotropina/genética , Porcinos Enanos , Oocitos
6.
Reprod Domest Anim ; 58(6): 882-887, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081592

RESUMEN

It is important to prevent microbial contamination during liquid preservation of semen in pigs. We examined the effects of curcumin supplementation on the quality of porcine spermatozoa irradiated with ultraviolet-C (UV-C) at 228 nm. UV-C is used to disinfect gases and solid surfaces. In the first experiment, porcine semen was preserved with 0, 10, 25, 50 or 100 µM curcumin under UV-C irradiation at 228 nm for 7 days at 15°C. The irradiation did not affect the motility and viability of preserved spermatozoa but decreased the percentage of plasma membrane integrity of spermatozoa. Curcumin supplementation at 25 µM significantly improved the plasma membrane and acrosome integrity of irradiated spermatozoa compared with spermatozoa preserved without curcumin (p < .05). In the second experiment, semen was preserved with or without 25 µM curcumin with UV-C irradiation at 228 or 260 nm for 3 days at 15°C. Curcumin supplementation increased the percentages of total motility, sperm viability and plasma membrane integrity of preserved spermatozoa at both irradiation wavelengths (p < .05). All quality parameters of 260 nm irradiated spermatozoa decreased compared to those of the other groups, irrespective of curcumin supplementation. The collective findings indicate that porcine spermatozoa can retain their viability even after continuous long-duration irradiation with 228 nm UV-C. Curcumin supplementation improves the quality of UV-C irradiated spermatozoa during semen preservation.


Asunto(s)
Curcumina , Preservación de Semen , Porcinos , Masculino , Animales , Semen , Curcumina/farmacología , Espermatozoides , Acrosoma , Análisis de Semen/veterinaria , Preservación de Semen/veterinaria , Suplementos Dietéticos , Motilidad Espermática
7.
Reprod Domest Anim ; 57(9): 999-1006, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35614560

RESUMEN

The balance between proliferation, differentiation and apoptosis is well-coordinated in spermatogenesis for the timely production of appropriate numbers of sperm in animals. Disruption or decrease in sperm production is due to many conditions, including changes in testicular cell fate balance. Interspecies hybridization of domestic yaks and cattle results in sterility in males because of spermatogenic arrest; however, the underlying mechanisms involved in sterility are still unclear. In the present study, we investigated the proliferation and apoptosis status during the development of yaks and crossbred cattle-yaks using immunohistochemistry of proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assays. Testicular tissues from yaks (immature: 1 year old, mature: 2-3 years old) and backcrossed hybrids (2 year old) were collected and used to investigate the expression of each parameter in testicular cells. During the maturation of yak testes, proliferation and apoptosis became active only in spermatogenic cells, and not in other somatic cells, such as Sertoli cells, myoid cells and Leydig cells. Furthermore, hybrid cattle-yak testes maintained proliferation ability but less apoptotic ability in spermatogenic cells when compared to yaks of the same age, suggesting that normal spermatogenic cell fate control is disrupted by changes in the balance between proliferation and apoptosis. In addition, Leydig cell proliferation rate was higher than apoptosis rate in the cattle-yak testes, indicating an increased number of Leydig cells, which may affect spermatogenesis through changes in steroidogenesis. Although epigenetic changes may be involved in cattle-yak testes, further studies are needed to clarify the modulation of proliferation and apoptosis to elucidate the mechanisms of infertility in hybrid cattle-yak males.


Asunto(s)
Azoospermia , Enfermedades de los Bovinos , Animales , Apoptosis , Azoospermia/veterinaria , Bovinos , Enfermedades de los Bovinos/metabolismo , Proliferación Celular , Masculino , Semen , Espermatogénesis , Testículo/metabolismo
8.
Reprod Domest Anim ; 57(10): 1136-1142, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35699358

RESUMEN

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) technology is growing rapidly and has been greatly influencing the efficiency and effectiveness of genetic modifications in different applications. One aspect of research gaining importance in the development of the CRISPR/Cas9 system is the introduction of CRISPR materials into target organisms. Although we previously demonstrated the efficacy of electroporation- and lipofection-mediated CRISPR/Cas9 gene disruption in porcine zygotes, we still believe that the efficiency of this system could be improved by combining these two methods. The present study was thus conducted to clarify the effects of a combination of electroporation and lipofection for delivering CRISPR/Cas9 components into zona pellucida (ZP)-intact and -free zygotes. The results revealed that electroporation alone significantly increased the biallelic mutation rates in the resulting blastocysts compared to lipofection alone, irrespective of the presence of ZP. None of ZP-intact zygotes treated by lipofectamine alone had any mutations, suggesting that removal of the ZP is necessary for enabling CRISPR/Cas9-based genome editing via lipofection treatment in the zygotes. Additional lipofectamine treatment after electroporation did not improve the rates of total and biallelic mutations in the resulting blastocysts derived from either ZP-intact or -free zygotes.


Asunto(s)
Proteína 9 Asociada a CRISPR , Edición Génica , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Electroporación/métodos , Electroporación/veterinaria , Edición Génica/métodos , Edición Génica/veterinaria , Porcinos , Transfección/veterinaria , Cigoto
9.
Reprod Domest Anim ; 57(5): 556-563, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35137478

RESUMEN

This study developed an efficient method for liquid storage of in vitro-derived porcine blastocysts at ambient temperature for 24 hr. We evaluated the effects of new chemically defined media (cell wash and preservation solution, Cellstor® -W [Cell-W] and cell suspension and preservation solution, Cellstor® -S [Cell-S]) for short-term storage. In the first experiment, in vitro-derived blastocyst were stored at 25ºC for 24 hr in Cell-W solution, Cell-S solution and pig embryo culture (PBM) medium. There were no differences in the rates of survival and development of stored blastocysts between the Cell-S and Cell-W solutions, but the total cell number of embryos that survived after storage in Cell-S solution was significantly higher (p < .05) than that in the Cell-W solution. In the second experiment, Cell-S solution was used to store the in vitro-derived blastocysts at 20°C, 25°C and 30°C. Storage at 20°C resulted in a significant decrease in the rates of survival and development of stored blastocysts compared to storage at 25°C or 30°C. No differences in survival and development rates were observed between storage at 25°C and 30°C, but the damage to the embryo quality after storage and culture was significantly lower at 25°C than at 30°C. In the third experiment, Cell-S solution was supplemented with ß-mercaptoethanol and curcumin, either alone or in combination, as antioxidant agents. Although the supplementation with curcumin did not improve survival, it significantly increased the development rate of stored blastocysts compared with the control blastocysts stored without antioxidants. In conclusion, when porcine blastocysts were stored at 25°C for 24 hr, a Cell-S solution may be effective for maintaining the survival and development of in vitro embryos.


Asunto(s)
Curcumina , Animales , Blastocisto , Medios de Cultivo/farmacología , Curcumina/farmacología , Embrión de Mamíferos , Fertilización In Vitro/veterinaria , Porcinos , Temperatura
10.
Reprod Domest Anim ; 57(3): 314-320, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34862995

RESUMEN

The oocyte maturation process requires a high supply of energy, which generates reactive oxygen species (ROS), adversely affecting oocyte and embryo development. Balancing ROS by antioxidant supplementation is essential for maintaining oocyte maturation and embryonic quality in vitro. This study aimed to evaluate the impact of four antioxidants: ß-mercaptoethanol (ß-ME), chlorogenic acid (CGA), curcumin and sericin, when applied individually or in combinations, during oocyte maturation on development of porcine oocytes. Cumulus-oocyte complexes were collected, cultured in maturation medium supplemented with antioxidants for 44 hr and subsequently subjected to in vitro fertilization (IVF) and culture for 7 days. Combining all four (ß-ME + CGA + curcumin + sericin) or three (ß-ME + CGA + curcumin) antioxidants increased blastocyst formation rates. However, sericin supplementation alone, or in combination with ß-ME or CGA, failed to improve blastocyst formation rates. The total cell numbers of blastocysts from the group supplemented with three antioxidants (ß-ME + CGA + curcumin) were significantly higher than those from the other groups, except for the curcumin-supplement group. There were no differences in the maturation rates and proportions of oocytes with fragmented DNA between the antioxidant-supplemented and the non-supplemented control groups. In conclusion, supplementation with three antioxidants (ß-ME + CGA + curcumin) during the maturation culture enhanced blastocyst formation and improved blastocyst quality.


Asunto(s)
Antioxidantes , Técnicas de Maduración In Vitro de los Oocitos , Animales , Antioxidantes/farmacología , Blastocisto , Suplementos Dietéticos , Desarrollo Embrionario , Fertilización In Vitro/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos , Porcinos
11.
Reprod Domest Anim ; 57(3): 304-313, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34854139

RESUMEN

Although the interspecies hybridization of bovids, such as cattle-yak (Bos taurus × Bos grunniens), has heterosis benefits, the infertility of hybrid males affects the maintenance of dominant traits in subsequent generations. To achieve reproductive capacity, male germ cell development requires coordinated changes in gene expression, including DNA methylation and generalized histone modifications. Although gene expression-related mechanisms underlying hybrid male sterility have been investigated recently, information on the cell types and stage-specific controls remains limited. Here, we used immunohistochemistry and image analyses to evaluate the 5-methylcytosine (5MC) and acetyl-histone H3 Lys9 (AcK9) expression in all spermatogonia and testicular somatic cell types to determine their roles in cattle-yak spermatogenesis. Testicular tissues from yak (1-3 years old) and backcrossed hybrids (2 years old) were used. In yak, the AcK9 expression levels increased in all cell types during maturation, but the 5MC expression levels did not change until reaching 3 years when they increased in all testicular cell types, except spermatogonia. Cattle-yak hybrids showed higher 5MC expression levels and different AcK9 expression levels in all cell types compared to the same-aged yak. These results suggested that both gene modulation by AcK9 and constant levels of DNA methylation are required for spermatogenesis during maturation in yak. Therefore, inappropriate expression levels of both AcK9 and DNA methylation might be the major factors for disruption of normal germ cell development in cattle-yak. Additionally, various modulations occurred depending on the cell type. Further experiments are needed to identify the stage-specific gene expression modulations in each cell type in yak and cattle-yak to potentially solve the infertility issue in crossbreeding.


Asunto(s)
Enfermedades de los Bovinos , Infertilidad Masculina , Acetilación , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Metilación de ADN , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/veterinaria , Masculino , Espermatogénesis/genética , Testículo/metabolismo
12.
Xenotransplantation ; 28(6): e12717, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34730861

RESUMEN

BACKGROUND: We demonstrated that neonatal porcine bone marrow-derived mesenchymal stem cell (npBM-MSCs) could improve a critical ischemic limb disease in rat model more efficiently compared with human MSCs. However, since porcine MSC presents galactosyl-alpha 1,3-galactose antigen (Gal antigen), MSC could be eliminated by the xenogeneic rejection. Recently, we established Gal knockout (KO) pigs by a technique of the electroporation of the CRISPR/Cas9 system into vitro-fertilized zygotes. In this study, we hypothesized that MSC from the established Gal KO pigs could further improve the efficacy. Before examining the hypothesis, in this study, we have established and characterized bone marrow-derived MSC from the Gal KO adult pigs (apBM-MSCs). METHODS: Mononuclear cells (MNCs) were isolated from bone marrow cells of both Gal KO adult pigs and wild-type (WT) adult pigs. MNCs were further manipulated to create Gal KO apBM-MSCs and WT apBM-MSCs. Both MSCs were assessed by their surface markers, the capability of differentiation into adipocytes, osteocytes and chondrocytes, grow speed and colony-forming assay. To assess the efficacy of Gal KO apBM-MSCs, angiogenesis-related genes and immunosuppression-related genes were assessed by cytokine stimulation. RESULTS: Gal KO apBM-MSC showed no Gal antigen on their cell surfaces. Both Gal KO apBM-MSCs and WT apBM-MSCs, presented little or no negative surface markers of MSCs, while they presented positive surface markers of MSCs. Furthermore, Gal KO apBM-MSCs were able to differentiate into adipocytes, osteocytes, and chondrocytes as well as WT apBM-MSCs. There was no difference in doubling time between Gal KO apBM-MSCs and WT apBM-MSCs. Interestingly, the colony-forming efficiency of Gal KO apBM-MSCs was about half that of WT apBM-MSC. However, angiogenesis and immunosuppression-related genes were equally upregulated in both Gal KO apBM-MSCs and WT apBM-MSCs by cytokine stimulation. CONCLUSION: We created and characterized Gal KO apBM-MSCs which showed similar characteristics and cytokine-induced gene upregulation to the WT apBM-MSCs.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Ratas , Porcinos , Trasplante Heterólogo
13.
J Reprod Dev ; 67(3): 177-187, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33840678

RESUMEN

Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/veterinaria , Animales , Animales Modificados Genéticamente , Ingeniería Genética , Porcinos
14.
Anim Biotechnol ; 32(2): 147-154, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31558095

RESUMEN

CD163 is a putative fusion receptor for virus of porcine reproductive and respiratory syndrome (PRRS). In this study, we introduced a CRISPR/Cas9 system [guide RNAs (gRNAs) with Cas9 protein] targeting the CD163 gene into in vitro-fertilized porcine zygotes by electroporation to generate CD163-modified pigs. First, we designed four types of gRNAs that targeted distinct sites in exon 7 of the CD163 gene. Cas9 protein with different gRNAs was introduced into in vitro-fertilized zygotes by electroporation. When the electroporated zygotes were allowed to develop to blastocysts in vitro and the genome editing efficiency was evaluated using these blastocysts, three (gRNA1, 2, and 4) of the four gRNAs tested successfully edited the CD163 gene. To generate CD163-knockout pigs, a total of 200 electroporated zygotes using these three gRNAs were transferred into the oviducts of oestrous-synchronized surrogate and the surrogate gave birth to eight piglets. Subsequent sequence analysis revealed that one of the piglets carried no wild-type sequence in CD163 gene. The other seven piglets carried only wild-type sequence. Thus, we successfully generated a CD163-edited pig by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes, although further improvement is required to generate genetically modified pigs with high efficiency.


Asunto(s)
Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Sistemas CRISPR-Cas , Electroporación/veterinaria , Receptores de Superficie Celular/genética , Porcinos/genética , Animales , Animales Modificados Genéticamente , Técnicas de Cultivo de Embriones , Transferencia de Embrión , Femenino , Fertilización In Vitro , Eliminación de Gen , Embarazo , ARN Guía de Kinetoplastida
15.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668187

RESUMEN

Xenoantigens cause hyperacute rejection and limit the success of interspecific xenografts. Therefore, genes involved in xenoantigen biosynthesis, such as GGTA1, CMAH, and B4GALNT2, are key targets to improve the outcomes of xenotransplantation. In this study, we introduced a CRISPR/Cas9 system simultaneously targeting GGTA1, CMAH, and B4GALNT2 into in vitro-fertilized zygotes using electroporation for the one-step generation of multiple gene-edited pigs without xenoantigens. First, we optimized the combination of guide RNAs (gRNAs) targeting GGTA1 and CMAH with respect to gene editing efficiency in zygotes, and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. Next, we optimized the Cas9 protein concentration with respect to the gene editing efficiency when GGTA1, CMAH, and B4GALNT2 were targeted simultaneously, and generated gene-edited pigs using the optimized conditions. We achieved the one-step generation of GGTA1/CMAH double-edited pigs and GGTA1/CMAH/B4GALNT2 triple-edited pigs. Immunohistological analyses demonstrated the downregulation of xenoantigens; however, these multiple gene-edited pigs were genetic mosaics that failed to knock out some xenoantigens. Although mosaicism should be resolved, the electroporation technique could become a primary method for the one-step generation of multiple gene modifications in pigs aimed at improving pig-to-human xenotransplantation.


Asunto(s)
Animales Modificados Genéticamente/genética , Antígenos Heterófilos/biosíntesis , Sistemas CRISPR-Cas , Galactosiltransferasas/antagonistas & inhibidores , Oxigenasas de Función Mixta/antagonistas & inhibidores , N-Acetilgalactosaminiltransferasas/antagonistas & inhibidores , Cigoto/fisiología , Animales , Femenino , Edición Génica , Porcinos
16.
BMC Biotechnol ; 20(1): 40, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811500

RESUMEN

BACKGROUND: Xenoantigens are a major source of concern with regard to the success of interspecific xenografts. GGTA1 encodes α1,3-galactosyltransferase, which is essential for the biosynthesis of galactosyl-alpha 1,3-galactose, the major xenoantigen causing hyperacute rejection. GGTA1-modified pigs, therefore, are promising donors for pig-to-human xenotransplantation. In this study, we developed a method for the introduction of the CRISPR/Cas9 system into in vitro-fertilized porcine zygotes via electroporation to generate GGTA1-modified pigs. RESULTS: We designed five guide RNAs (gRNAs) targeting distinct sites in GGTA1. After the introduction of the Cas9 protein with each gRNA via electroporation, the gene editing efficiency in blastocysts developed from zygotes was evaluated. The gRNA with the highest gene editing efficiency was used to generate GGTA1-edited pigs. Six piglets were delivered from two recipient gilts after the transfer of electroporated zygotes with the Cas9/gRNA complex. Deep sequencing analysis revealed that five out of six piglets carried a biallelic mutation in the targeted region of GGTA1, with no off-target events. Furthermore, staining with isolectin B4 confirmed deficient GGTA1 function in GGTA1 biallelic mutant piglets. CONCLUSIONS: We established GGTA1-modified pigs with high efficiency by introducing a CRISPR/Cas9 system into zygotes via electroporation. Multiple gene modifications, including knock-ins of human genes, in porcine zygotes via electroporation may further improve the application of the technique in pig-to-human xenotransplantation.


Asunto(s)
Sistemas CRISPR-Cas , Electroporación/métodos , Fertilización In Vitro/métodos , Galactosiltransferasas/deficiencia , Galactosiltransferasas/genética , Edición Génica/métodos , Cigoto/metabolismo , Animales , Animales Modificados Genéticamente , Blastocisto , Proteína 9 Asociada a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Disacáridos , Femenino , Xenoinjertos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación , ARN Guía de Kinetoplastida , Porcinos , Trasplante Heterólogo
17.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31534037

RESUMEN

Endogenous retroviruses (ERVs) of domestic cats (ERV-DCs) are one of the youngest feline ERV groups in domestic cats (Felis silvestris catus); some members are replication competent (ERV-DC10, ERV-DC18, and ERV-DC14), produce the antiretroviral soluble factor Refrex-1 (ERV-DC7 and ERV-DC16), or can generate recombinant feline leukemia virus (FeLV). Here, we investigated ERV-DC in European wildcats (Felis silvestris silvestris) and detected four loci: ERV-DC6, ERV-DC7, ERV-DC14, and ERV-DC16. ERV-DC14 was detected at a high frequency in European wildcats; however, it was replication defective due to a single G → A nucleotide substitution, resulting in an E148K substitution in the ERV-DC14 envelope (Env). This mutation results in a cleavage-defective Env that is not incorporated into viral particles. Introduction of the same mutation into feline and murine infectious gammaretroviruses resulted in a similar Env dysfunction. Interestingly, the same mutation was found in an FeLV isolate from naturally occurring thymic lymphoma and a mouse ERV, suggesting a common mechanism of virus inactivation. Refrex-1 was present in European wildcats; however, ERV-DC16, but not ERV-DC7, was unfixed in European wildcats. Thus, Refrex-1 has had an antiviral role throughout the evolution of the genus Felis, predating cat exposure to feline retroviruses. ERV-DC sequence diversity was present across wild and domestic cats but was locus dependent. In conclusion, ERVs have evolved species-specific phenotypes through the interplay between ERVs and their hosts. The mechanism of viral inactivation may be similar irrespective of the evolutionary history of retroviruses. The tracking of ancestral retroviruses can shed light on their roles in pathogenesis and host-virus evolution.IMPORTANCE Domestic cats (Felis silvestris catus) were domesticated from wildcats approximately 9,000 years ago via close interaction between humans and cats. During cat evolution, various exogenous retroviruses infected different cat lineages and generated numerous ERVs in the host genome, some of which remain replication competent. Here, we detected several ERV-DC loci in Felis silvestris silvestris Notably, a species-specific single nucleotide polymorphism in the ERV-DC14 env gene, which results in a replication-defective product, is highly prevalent in European wildcats, unlike the replication-competent ERV-DC14 that is commonly present in domestic cats. The presence of the same lethal mutation in the env genes of both FeLV and murine ERV provides a common mechanism shared by endogenous and exogenous retroviruses by which ERVs can be inactivated after endogenization. The antiviral role of Refrex-1 predates cat exposure to feline retroviruses. The existence of two ERV-DC14 phenotypes provides a unique model for understanding both ERV fate and cat domestication.


Asunto(s)
Animales Salvajes/virología , Gatos/virología , Retrovirus Endógenos/genética , Infecciones por Retroviridae/virología , Animales , Enfermedades de los Gatos/inmunología , Enfermedades de los Gatos/virología , Línea Celular , Evolución Molecular , Gammaretrovirus/genética , Genes env/genética , Células HEK293 , Humanos , Virus de la Leucemia Felina/genética , Proteínas de la Membrana , Ratones , Mutación , Filogenia , Alineación de Secuencia , Análisis de Secuencia de Proteína , Especificidad de la Especie , Replicación Viral
18.
Mol Reprod Dev ; 87(4): 471-481, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32166879

RESUMEN

Pancreatic duodenal homeobox 1 (PDX1) is a crucial gene for pancreas development during the fetal period. PDX1-modified pigs have the potential to be used as a model of diabetes mellitus. However, the severe health problems caused by the PDX1 mutation limit phenotypic studies of PDX1-modified pigs as diabetes models. In this study, we generated PDX1-modified pigs by the CRISPR/Cas9 system introduced into zygotes via electroporation and investigated the mosaicism, phenotypes, and inheritance of the resulting pigs. After the embryo transfer of PDX1-modified zygotes, nine mutant piglets were delivered. Two piglets were apancreatic biallelic mutants. For the other seven piglets, the ratio of mutant alleles to total alleles was 17.5-79.7%. Two mutant piglets with high mutation rates (67.7% and 79.7%) exhibited hypoplasia of the pancreas, whereas the other five piglets were healthy. One of the male mutant piglets was further analyzed. The ejaculated semen from the pig contained PDX1-mutant spermatozoa and the pig showed normal reproductive ability. In conclusion, the frequency of the PDX1 mutation is presumed to relate to pancreas formation, and PDX1 mutant founder pigs generated from zygotes introduced to the CRISPR/Cas9 system can serve as providers of nonmosaics to contribute to medical research on diabetes mellitus.


Asunto(s)
Edición Génica/métodos , Proteínas de Homeodominio/genética , Mosaicismo , Fenotipo , Porcinos/genética , Transactivadores/genética , Alelos , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Diabetes Mellitus , Modelos Animales de Enfermedad , Transferencia de Embrión , Femenino , Proteínas de Homeodominio/metabolismo , Masculino , Tasa de Mutación , Páncreas/metabolismo , Páncreas/patología , Semen/metabolismo , Espermatozoides/metabolismo , Transactivadores/metabolismo , Cigoto/metabolismo
19.
Mol Biol Rep ; 47(7): 5073-5079, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32519310

RESUMEN

The CRISPR/Cas9 system now allows for unprecedented possibilities of genome editing. However, there are some limitations, including achieving efficient one-step multiple genome targeting to save costs, time, and ensure high quality. In the present study, we investigated the efficiency of one-step multiple gene modification by electroporation in porcine zygotes using pooled guide RNAs (gRNAs) targeting CMAH, GHR, GGTA1, and PDX1. We first selected the best-performing gRNA from three different designs for each gene based on the effect on embryo development and mutation efficiency. The three gRNAs showed equivalent effects on the rates of blastocyst formation in each targeted gene; however, gRNAs CMAH #2, GHR #3, GGTA1 #3, and PDX1 #3 showed the highest biallelic mutation rate, although the total mutation rate of PDX1 #3 was significantly lower than that of PDX1 #1. Therefore, CMAH #2, GHR #3, GGTA1 #3, and PDX1 #1 were used as a mixture in electroporation to further clarify whether multiple genes can be targeted simultaneously. Individual sequencing of 43 blastocysts at the target sites of each gene showed mutations in one and two target genes in twenty-four (55.8%) and nine (20.9%) blastocysts, respectively. No mutation was detected in any target gene in ten (23.3%) blastocysts and no blastocysts had a mutation in three or more target genes. These results indicate that electroporation could effectively deliver multiple gRNAs and Cas9 protein into porcine zygotes to target multiple genes in a one-step process. However, the technique requires further development to increase the success rate of multiple gene modification.


Asunto(s)
Sistemas CRISPR-Cas , Electroporación/métodos , Marcación de Gen/métodos , Porcinos/genética , Animales , Blastocisto/metabolismo , Células Cultivadas , Electroporación/veterinaria , Femenino , Fertilización In Vitro/métodos , Fertilización In Vitro/veterinaria , Galactosiltransferasas/genética , Marcación de Gen/veterinaria , Ghrelina/genética , Proteínas de Homeodominio/genética , Oxigenasas de Función Mixta/genética , ARN Guía de Kinetoplastida/genética , Porcinos/fisiología , Transactivadores/genética , Cigoto/metabolismo
20.
Reprod Domest Anim ; 55(2): 209-216, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31858644

RESUMEN

In Mongolia, yak (Bos grunniens) are able to live in alpine areas and their products greatly influence the lives of the local people. Increased vigour in hybridized yak and cattle can offer benefits for livestock farmers. However, male hybrids show reproductive defects resulting from spermatogenesis arrest, affecting the conservation and maintenance of dominant traits in the next generation. The underlying mechanisms involved in hybrid cattle-yak infertility have recently been investigated; however, the genetic cause is still unclear. Androgens and androgen receptor (AR) signalling are required for spermatogenesis. We, therefore, evaluated the expression of AR, 3ß-hydroxysteroid dehydrogenase (3ßHSD) and 5α-reductase 2 (SRD5A2) in Leydig cells to investigate their function in cattle-yak spermatogenesis. Testicular tissues from yaks (1-3 years old) and hybrids (F1-F3, 2 years old) were collected and subjected to immunohistochemistry and image analyses to investigate the expression of each parameter in the Leydig cells. After maturation at 2 years, the expression levels of AR increased and the levels of 3ßHSD decreased, but the SRD5A2 levels remained constant in yak. However, the cattle-yak hybrid F2 showed immature testicular development and significantly different expression levels of AR and 3ßHSD compared with mature yak. These results suggest that the decreased expression of AR and increased expression of 3ßHSD in the Leydig cells of cattle-yak hybrid testes may represent one of the causes of infertility. Our study might help in solving the problem of infertility in crossbreeding.


Asunto(s)
Bovinos/genética , Hibridación Genética , Infertilidad Masculina/genética , Células Intersticiales del Testículo/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Animales , Infertilidad Masculina/patología , Células Intersticiales del Testículo/enzimología , Masculino , Receptores Androgénicos/metabolismo , Espermatogénesis/genética , Testículo/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA