Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Control Release ; 365: 469-479, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040340

RESUMEN

With only limited clinical patient benefit, focusing on new immune checkpoint pathways could be an important complement to current immune checkpoint drugs. In addition, not only does T cell-mediated adaptive immunity play an important role, but also macrophage-mediated innate immunity, due to its abundant presence in solid tumors. Here, we developed an engineered M1-like macrophage exosome, OX40L M1-exos. OX40L M1-exos can activate the adaptive immunity by activating the OX40/OX40L pathway and can reprogram M2-like tumor-associated macrophages into M1-like macrophages, thereby restoring and enhancing macrophage-mediated innate immunity. Our OX40L M1-exos achieved an effective synergistic effect of innate and adaptive immunity and achieved a potent therapeutic effect in a mouse breast cancer model, effectively inhibiting tumor growth and metastasis. These results suggest that OX40L M1-exos are an attractive therapeutic strategy and may be an important complement to current cancer immunotherapies.


Asunto(s)
Exosomas , Neoplasias , Humanos , Ratones , Animales , Macrófagos , Inmunoterapia/métodos , Inmunidad Innata , Neoplasias/terapia
2.
Nat Commun ; 15(1): 6783, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117634

RESUMEN

Although nanocatalytic medicine has demonstrated its advantages in tumor therapy, the outcomes heavily relie on substrate concentration and the metabolic pathways are still indistinct. We discover that violet phosphorus quantum dots (VPQDs) can catalyze the production of reactive oxygen species (ROS) without requiring external stimuli and the catalytic substrates are confirmed to be oxygen (O2) and hydrogen peroxide (H2O2) through the computational simulation and experiments. Considering the short of O2 and H2O2 at the tumor site, we utilize calcium peroxide (CaO2) to supply catalytic substrates for VPQDs and construct nanoparticles together with them, named VPCaNPs. VPCaNPs can induce oxidative stress in tumor cells, particularly characterized by a significant increase in hydroxyl radicals and superoxide radicals, which cause substantial damage to the structure and function of cells, ultimately leading to cell apoptosis. Intriguingly, O2 provided by CaO2 can degrade VPQDs slowly, and the degradation product, phosphate, as well as CaO2-generated calcium ions, can promote tumor calcification. Antitumor immune activation and less metastasis are also observed in VPCaNPs administrated animals. In conclusion, our study unveils the anti-tumor activity of VPQDs as catalysts for generating cytotoxic ROS and the degradation products can promote tumor calcification, providing a promising strategy for treating tumors.


Asunto(s)
Apoptosis , Peróxido de Hidrógeno , Estrés Oxidativo , Fósforo , Puntos Cuánticos , Especies Reactivas de Oxígeno , Fósforo/metabolismo , Fósforo/química , Animales , Humanos , Puntos Cuánticos/química , Catálisis , Especies Reactivas de Oxígeno/metabolismo , Ratones , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peróxidos/metabolismo , Peróxidos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nanopartículas/química , Oxígeno/metabolismo , Oxígeno/química , Compuestos de Calcio/química , Compuestos de Calcio/metabolismo , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química
3.
J Control Release ; 355: 760-778, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36822241

RESUMEN

The successful clinical application of immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapeutics has attracted extensive attention to immunotherapy, however, their drawbacks such as limited specificity, persistence and toxicity haven't met the high expectations on efficient cancer treatments. Therapeutic cancer vaccines which instruct the immune system to capture tumor specific antigens, generate long-term immune memory and specifically eliminate cancer cells gradually become the most promising strategies to eradicate tumor. However, the disadvantages of some existing vaccines such as weak immunogenicity and in vivo instability have restricted their development. Nanotechnology has been recently incorporated into vaccine fabrication and exhibited promising results for cancer immunotherapy. Nanoparticles promote the stability of vaccines, as well as enhance antigen recognition and presentation owing to their nanometer size which promotes internalization of antigens by phagocytic cells. The surface modification with targeting units further permits the delivery of vaccines to specific cells. Meanwhile, nanocarriers with adjuvant effect can improve the efficacy of vaccines. In addition to classic vaccines composed of antigens and adjuvants, the nanoparticle-mediated chemotherapy, radiotherapy and certain other therapeutics could induce the release of tumor antigens in situ, which therefore effectively simulate antitumor immune responses. Such vaccine-like nanomedicine not only kills primary tumors, but also prevents tumor recurrence and helps eliminate metastatic tumors. Herein, we introduce recent developments in nanoparticle-based delivery systems for antigen delivery and in situ antitumor vaccination. We will also discuss the remaining opportunities and challenges of nanovaccine in clinical translation towards cancer treatment.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Humanos , Nanomedicina/métodos , Neoplasias/tratamiento farmacológico , Antígenos de Neoplasias , Adyuvantes Inmunológicos , Inmunoterapia/métodos
4.
Acta Pharm Sin B ; 13(12): 5107-5120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045064

RESUMEN

Oxidative stress injury and mitochondrial dysfunction are major obstacles to neurological functional recovery after ischemic stroke. The development of new approaches to simultaneously diminish oxidative stress and resist mitochondrial dysfunction is urgently needed. Inspired by the overproduced reactive oxygen species (ROS) at ischemic neuron mitochondria, multifunctional nanoparticles with ROS-responsiveness and mitochondrial-targeted (SPNPs) were engineered, achieving specific targeting delivery and controllable drug release at ischemic penumbra. Due to the nose-to-brain pathway, SPNPs which were encapsulated in a thermo-sensitive gel by intranasal administration were directly delivered to the ischemic penumbra bypassing the blood‒brain barrier (BBB) and enhancing delivery efficiency. The potential of SPNPs for ischemic stroke treatment was systematically evaluated in vitro and in rat models of middle cerebral artery occlusion (MCAO). Results demonstrated the mitochondrial-targeted and protective effects of SPNPs on H2O2-induced oxidative damage in SH-SY5Y cells. In vivo distribution analyzed by fluorescence imaging proved the rapid and enhanced active targeting of SPNPs to the ischemic area in MCAO rats. SPNPs by intranasal administration exhibited superior therapeutic efficacy by alleviating oxidative stress, diminishing inflammation, repairing mitochondrial function, and decreasing apoptosis. This strategy provided a multifunctional delivery system for the effective treatment of ischemic injury, which also implies a potential application prospect for other central nervous diseases.

5.
Bioact Mater ; 20: 663-676, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35891799

RESUMEN

Cancer therapies based on energy conversion, such as photothermal therapy (PTT, light-to-thermal energy conversion) and photodynamic therapy (PDT, light-to-chemical energy conversion) have attracted extensive attention in preclinical research. However, the PTT-related hyperthermia damage to surrounding tissues and shallow penetration of PDT-applied light prevent further advanced clinical practices. Here, we developed a thermoelectric therapy (TET) based on thermoelectric materials constructed p-n heterojunction (SrTiO3/Cu2Se nanoplates) on the principle of light-thermal-electricity-chemical energy conversion. Upon irradiation and natural cooling-induced the temperature gradient (35-45 oC), a self-build-in electric field was constructed and thereby facilitated charges separation in bulk SrTiO3 and Cu2Se. Importantly, the contact between SrTiO3 (n type) and Cu2Se (p type) constructed another interfacial electric field, further guiding the separated charges to re-locate onto the surfaces of SrTiO3 and Cu2Se. The formation of two electric fields minimized probability of charges recombination. Of note, high-performance superoxide radicals and hydroxyl radicals' generation from O2 and H2O under catalyzation by separated electrons and holes, led to intracellular ROS burst and cancer cells apoptosis without apparent damage to surrounding tissues. Construction of bulk and interfacial electric fields in heterojunction for improving charges separation and transfer is also expected to provide a robust strategy for diverse applications.

6.
Carbohydr Polym ; 319: 121192, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567697

RESUMEN

Natural polysaccharides, represented by dextran, chitosan, and hyaluronic acid, are widely approved for use as pharmaceutical excipients and are important carrier materials for the design of advanced drug delivery systems, particularly in the field of anticancer drug delivery. The combination of stimuli-activable prodrug based chemotherapy and photodynamic therapy (PDT) has attracted increasing attention. Recent studies have verified the effectiveness of this strategy in the treatment of multiple aggressive cancers. However, in such combination, the stimuli-responsive chemotherapy and PDT have their own problems that need to be overcome. The uneven distribution of endogenous stimuli within tumor tissues makes it difficult for prodrug to be completely activated. And the inadequate tissue penetration depth of external light results in low efficiency of PDT. Aiming at these two bottlenecks, we designed a biocompatible dextran based - multi-component nanomedicine (PCL-NPs) that integrate a chemiluminescence agent luminol, a photosensitizer chlorine e6 (Ce6), and a reactive oxygen species (ROS)-activable thioketal-based paclitaxel (PTX) prodrug. The presence of overexpressed hydrogen peroxide (H2O2) inside tumor oxidizes the luminol moiety to generate in-situ light for PDT through chemiluminescence resonance energy transfer (CRET). The singlet oxygen (1O2) produced in this process not only directly kills tumor cells but also amplifies oxidative stress to accelerate the activation of PTX prodrug. We propose that the PCL-NPs have great therapeutic potential by simultaneously enhancing chemotherapy and PDT in a combination therapy.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Profármacos , Micelas , Fotoquimioterapia/métodos , Dextranos , Profármacos/farmacología , Profármacos/uso terapéutico , Luminiscencia , Peróxido de Hidrógeno , Luminol , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico
7.
Nat Commun ; 13(1): 2425, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504879

RESUMEN

Limited substrates content is a major hurdle dampening the antitumor effect of catalytic therapy. Herein, a two-dimensional interplanar heterojunction (FeOCl/FeOOH NSs) with ·OH generation under ultrasound irradiation is fabricated and utilized for catalytic cancer therapy. This interplanar heterojunction is prepared through replacing chlorine from iron oxychloride with hydroxyl. Benefiting from the longer hydroxyl bond length and enhanced affinity with water, the alkali replacement treatment integrates interplanar heterojunction synthesis and exfoliation in one step. In particular, a build-in electric field facilitated Z-scheme interplanar heterojunction is formed due to the aligning Fermi levels. The holes on the valence band of FeOCl have great ability to catalyze O2 evolution from H2O, meanwhile, the generated O2 is immediately and directly reduced to H2O2 by the electrons on the conductive band of FeOOH. The self-supplying H2O2 ability guarantees efficient ·OH generation via the Fenton-like reaction catalyzed by FeOCl/FeOOH NSs, which exhibits excellent anti-tumor performance.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Catálisis , Peróxido de Hidrógeno/química , Radical Hidroxilo , Neoplasias/terapia , Agua
8.
J Control Release ; 352: 450-458, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36341929

RESUMEN

Natural killer (NK) cells exert cytotoxic effects against infected or stressed cells, such as tumor cells, without the limitation of major histocompatibility complex (MHC) I. NK cells secrete perforins to form tunnels to mediate the entry of granzyme into target cells. This strategy, selected by natural evolution, provides a feasible method for the delivery of antitumor drugs against intracellular targets, and avoids drug-resistant mechanisms in tumor cells, such as the pumping out of drugs mediated by multidrug resistance. We constructed pH-labile artificial NK cells (ANKC) based on nature to mediate high levels of drugs in tumor cells to overcome tumor drug resistance. Mesoporous silicon nanoparticles (MSNs) modified with benzaldehyde were designed to function as scaffolds for ANKC. Doxorubicin (Dox), a model antitumor drug, was loaded into the pores of MSNs. Melittin, a pore-forming peptide, was utilized as the gate for mesopores with an acid-labile Schiff base linkage. pH-labile ANKC released melittin and Dox in slightly acidic tumor microenvironments. Melittin, like perforin, assembled tunnels on the plasma membrane or endosome, ensuring the intracellular transportation of Dox. Dox, similar to granzyme, induced the apoptosis of tumor cells. The combinational treatment partially eased the drug resistance mechanism, such as pumping out of drugs, by continuous intracellular drug accumulation mediated by melittin pores. The pH-labile ANKC demonstrated significant Dox enrichment in drug-resistant MCF-7/Adr cells and MCF-7/Adr-based xenograft tumors in a mouse model, which eventually contributed to efficient inhibition of the proliferation and growth of MCF-7/Adr tumors. PH-labile ANKC provided a potential strategy to treat drug-resistant tumors.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Ratones , Animales , Humanos , Femenino , Meliteno/farmacología , Granzimas , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Concentración de Iones de Hidrógeno , Células Asesinas Naturales , Neoplasias de la Mama/tratamiento farmacológico , Microambiente Tumoral
9.
J Control Release ; 345: 755-769, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35381273

RESUMEN

The hypoxic tumor microenvironment is one of most major hurdles restraining the anti-tumor efficiency of photodynamic therapy (PDT). Herein, active photosynthetic Chlorophyceae (Chlorella, Chl) functionalized with black phosphorus nanosheets (BPNSs) through polyaspartic acid (PASP) and Fe3+ mediating "Lego building method" are utilized for photocatalyzed oxygen-evolving to realize photosynthesis enhanced synergistic photodynamic/chemodynamic/immune therapy. The Chl cells with inherent photosynthesis and distinct metabolites are able to ameliorate tumor hypoxia, enhance immune cells infiltration, and stimulate the proliferation and maturation of immune cells. BPNSs loaded on the surface of Chl cells construct a type-II heterojunction with the chlorophyll in Chl cells, which improves the conversion efficiency of light through thoroughly separating photo-excited electrons and holes for 1O2 generation and O2 evolution, respectively. Additionally, the lock between "Lego bricks", Fe3+, can both consume glutathione (GSH) and catalyze Fenton reaction with H2O2 to generate ·OH, mediating chemodynamic therapy (CDT). Moreover, Chl@BP-Fe also exhibited high biocompatibility and potential biodegradability, guaranteeing high potential for clinic applications of this synergistic photodynamic/chemodynamic/immune therapy.


Asunto(s)
Chlorella , Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Glutatión , Peróxido de Hidrógeno , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
10.
Acta Pharm Sin B ; 12(12): 4472-4485, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36561996

RESUMEN

Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitochondrial respiration and inhibiting cellular ATP generation. Inspired by the fact that H2S can also serve as a promoter for intracellular Ca2+ influx, tumor-specific nanomodulators (I-CaS@PP) have been constructed by encapsulating calcium sulfide (CaS) and indocyanine green (ICG) into methoxy poly (ethylene glycol)-b-poly (lactide-co-glycolide) (PLGA-PEG). I-CaS@PP can achieve tumor-specific biodegradability with high biocompatibility and pH-responsive H2S release. The released H2S can effectively suppress the catalase (CAT) activity and synergize with released Ca2+ to facilitate abnormal Ca2+ retention in cells, thus leading to mitochondria destruction and amplification of oxidative stress. Mitochondrial dysfunction further contributes to blocking ATP synthesis and downregulating heat shock proteins (HSPs) expression, which is beneficial to overcome the heat endurance of tumor cells and strengthen ICG-induced photothermal performance. Such a H2S-boosted Ca2+-involved tumor-specific therapy exhibits highly effective tumor inhibition effect with almost complete elimination within 14-day treatment, indicating the great prospect of CaS-based nanomodulators as antitumor therapeutics.

11.
Adv Sci (Weinh) ; 9(23): e2201703, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35678111

RESUMEN

Nanozyme-based tumor catalytic therapy has attracted widespread attention in recent years, but its therapeutic outcome is drastically diminished by species of nanozyme, concentration of substrate, pH value, and reaction temperature, etc. Herein, a novel Cu-doped polypyrrole nanozyme (CuP) with trienzyme-like activities, including catalase (CAT), glutathione peroxidase (GPx), and peroxidase (POD), is first proposed by a straightforward one-step procedure, which can specifically promote O2 and ·OH elevation but glutathione (GSH) reduction in tumor microenvironment (TME), causing irreversible oxidative stress damage to tumor cells and reversing the redox balance. The PEGylated CuP nanozyme (CuPP) has been demonstrated to efficiently reverse immunosuppressive TME by overcoming tumor hypoxia and re-educating macrophage from pro-tumoral M2 to anti-tumoral M1 phenotype. More importantly, CuPP exhibits hyperthermia-enhanced enzyme-mimic catalytic and immunoregulatory activities, which results in intense immune responses and almost complete tumor inhibition by further combining with αPD-L1. This work opens intriguing perspectives not only in enzyme-catalytic nanomedicine but also in macrophage-based tumor immunotherapy.


Asunto(s)
Hipertermia Inducida , Neoplasias , Glutatión , Humanos , Factores Inmunológicos , Inmunoterapia/métodos , Macrófagos/patología , Neoplasias/terapia , Polímeros , Pirroles , Microambiente Tumoral
12.
Adv Sci (Weinh) ; 8(12): 2001801, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34194924

RESUMEN

Neighboring carbon and sandwiched between non-metals and metals in the periodic table of the elements, boron is one of the most chemically and physically versatile elements, and can be manipulated to form dimensionally low planar structures (borophene) with intriguing properties. Herein, the theoretical research and experimental developments in the synthesis of borophene, as well as its excellent properties and application in many fields, are reviewed. The decade-long effort toward understanding the size-dependent structures of boron clusters and the theory-directed synthesis of borophene, including bottom-up approaches based on different foundations, as well as up-down approaches with different exfoliation modes, and the key factors influencing the synthetic effects, are comprehensively summarized. Owing to its excellent chemical, electronic, mechanical, and thermal properties, borophene has shown great promise in supercapacitor, battery, hydrogen-storage, and biomedical applications. Furthermore, borophene nanoplatforms used in various biomedical applications, such as bioimaging, drug delivery, and photonic therapy, are highlighted. Finally, research progress, challenges, and perspectives for the future development of borophene in large-scale production and other prospective applications are discussed.

13.
J Control Release ; 338: 719-730, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34509586

RESUMEN

Given the difficulties of biodegradation of mesoporous silica nanoparticles (NPs), enrichment and penetration of tumor sites, and real-time monitoring of the treatment process, we developed a kind of mannose-doping doxorubicin-loading mesoporous silica nanoparticle (MSN-Man-DOX) and coated by polydopamine-Gd3+ (PDAGd) metal-phenolic networks, as well as modified by poly (2-Ethyl-2-Oxazoline) (PEOz), constructing a novel nanomedicine MSN-Man-DOX@PDA-Gd-PEOz. Its pH-responsive charge reversal, photothermal, biodegradation, drug release, and magnetic resonance imaging (MRI) properties were evaluated in vitro. Cellular uptake, tumor penetration, lysosomal escape properties, as well as cell safety and toxicity of the nanoplatform were investigated through cell experiments. Finally, the MRI, organ distribution, photothermal condition, and comprehensive anti-tumor therapy in vivo were evaluated comprehensively through animal experiments. Research results showed that MSN-Man-DOX@PDA-Gd-PEOz had outstanding tumor enrichment and penetration abilities, which can produce excellent treatment effects through the synergistic effect of chemotherapy and photothermal therapy (PTT) with the function of magnetic resonance imaging contrast agent for disease monitoring. Besides, after finishing the therapeutic effect MSN-Man-DOX@PDA-Gd-PEOz can be biodegraded, so it had a good prospect of clinical application.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Animales , Doxorrubicina , Liberación de Fármacos , Humanos , Fototerapia , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA