Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Biol Med ; 171: 108145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442553

RESUMEN

Four-dimensional conebeam computed tomography (4D CBCT) is an efficient technique to overcome motion artifacts caused by organ motion during breathing. 4D CBCT reconstruction in a single scan usually divides projections into different groups of sparsely sampled data based on the respiratory phases. The reconstructed images within each group present poor image quality due to the limited number of projections. To improve the image quality of 4D CBCT in a single scan, we propose a novel reconstruction scheme that combines prior knowledge with motion compensation. We apply the reconstructed images of the full projections within a single routine as prior knowledge, providing structural information for the network to enhance the restoration structure. The prior network (PN-Net) is proposed to extract features of prior knowledge and fuse them with the sparsely sampled data using an attention mechanism. The prior knowledge guides the reconstruction process to restore the approximate organ structure and alleviates severe streaking artifacts. The deformation vector field (DVF) extracted using deformable image registration among different phases is then applied in the motion-compensated ordered-subset simultaneous algebraic reconstruction algorithm to generate 4D CBCT images. Proposed method has been evaluated using simulated and clinical datasets and has shown promising results by comparative experiment. Compared with previous methods, our approach exhibits significant improvements across various evaluation metrics.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Tomografía Computarizada Cuatridimensional , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada Cuatridimensional/métodos , Respiración , Fantasmas de Imagen , Algoritmos , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física)
2.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630078

RESUMEN

Aiming at the problems of low machining accuracy and more serious tool wear in the traditional diamond grinding machining (DGM) microstructure of hard and brittle materials, this paper proposes high-speed rotary ultrasonic machining (HRUM) technology and develops a HRUM machine tool. The hardware part of the machine tool mainly includes the spindle module, micro-motion system module, ultrasonic machining tank module, and data acquisition (DAQ) system module. The LabView-based controlled machining control system, including motion selection, initialization, coarse tool setting, constant force tool setting, control machining, and coordinate display module, is developed. Comparative experimental research of the HRUM and DGM of small holes in Al2O3 ceramics is carried out in the developed HRUM machine tool. The results demonstrate that HRUM effectively reduces axial cutting forces, reduces binder adhesion, and suppresses slippage while improving tool-cutting ability and extending tool life compared to DGM under the same machining parameters. This technology has essential research significance for the high-precision and efficient machining of microstructures in hard and brittle materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA