Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(10): 1635-1650, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34888619

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease caused by homozygous deletions or mutations in survival motor neuron gene 1 (SMN1). Currently, the primary therapeutic strategy for SMA is to increase the level of SMN via correcting SMN2 splicing (nusinersen and risdiplam). However, some patients with SMA do not respond to such treatments, thereby warranting a need to develop new therapeutic strategies. We have previously reported that SMN2 expression is epigenetically regulated by DNA methylation levels of the SMN2 promoter region. In the present study, we determined that methyl-CpG-binding protein 2 (MeCP2) may bind to this critical promoter region (nt-167 to 43). Antisense oligonucleotides (ASO-P1 and ASO-P2) were designed to target the key methylation sites in the SMN2 promoter region, which enhanced the overall transcription and functional protein expression levels in the SMA cell lines. These results were similar to those observed in nusinersen-treated SMA cells. Moreover, a combined treatment of ASO-P1 and ASO-NUS in SMA cell lines further increases fl-SMN2 transcript and SMN protein levels. The delivery of ASO-P1 to the central nervous system of severe SMA mice corrected the molecular, pathological, and functional phenotypes of this disease and increased survival rates. Our findings suggest that the key methylation regions in the SMN2 promoter region may be a novel therapeutic target for SMA.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Oligonucleótidos Antisentido/genética , Regiones Promotoras Genéticas/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
2.
Front Neurol ; 15: 1382410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286802

RESUMEN

Background: Biomarkers can be used to assess the severity of spinal muscular atrophy (5q SMA; SMA). Despite their potential, the relationship between biomarkers and clinical outcomes in SMA remains underexplored. This study aimed to assess the association among biomarkers, phenotypes, and motor milestones in Chinese patients diagnosed with SMA. Methods: We collected retrospective clinical and follow-up data of disease-modifying therapy (DMT)-naïve patients with SMA at our center from 2019 to 2021. Four biomarkers were included: survival motor neuron 2 (SMN2) copies, neuronal apoptosis inhibitory protein (NAIP) copies, full-length SMN2 (fl-SMN2), and F-actin bundling protein plastin 3 (PLS3) transcript levels. Data were analyzed and stratified according to SMA subtype. Results: Of the 123 patients, 30 were diagnosed with Type 1 (24.3%), 56 with Type 2 (45.5%), and 37 with Type 3 (30.1%). The mortality rate for Type 1 was 50%, with median survival times of 2 and 8 months for types 1a and 1b, respectively. All four biomarkers were correlated with disease severity. Notably, fl-SMN2 transcript levels increased with SMN2 copies and were higher in Type 2b than those in Type 2a (p = 0.028). Motor milestone deterioration was correlated with SMN2 copies, NAIP copies, and fl-SMN2 levels, while PLS3 levels were correlated with standing and walking function. Discussion: Our findings suggest that SMN2 copies contribute to survival and that fl-SMN2 may serve as a valuable biomarker for phenotypic variability in SMA Type 2 subtypes. These insights can guide future research and clinical management of SMA.

3.
Heliyon ; 10(6): e28015, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38515714

RESUMEN

Accurate genetic diagnosis is necessary for guiding the treatment of spinal muscular atrophy (SMA). An updated consensus for the diagnosis and management of SMA was published in 2018. However, clinicians should remain alert to some pitfalls of genetic testing that can occur when following a routine diagnosis. In this study, we report the diagnosis of three unrelated individuals who were initially misdiagnosed as carrying a homozygous deletion of SMN1 exon 7. MLPA (P060 and P021) and qPCR were used to detect the copy number of SMN. SMN1 variants were identified by SMN1 clone and next-generation sequencing (NGS). Transcription of SMN1 variants was detected using qRT-PCR and ex vivo splicing analysis. Among the three individuals, one was identified as a patient with SMA carrying a heterozygous deletion and a pathogenic variant (c.835-17_835-14delCTTT) of SMN1, one was a healthy carrier only carrying a heterozygous deletion of SMN1 exon 7, and the third was a patient with nemaline myopathy 2 carrying a heterozygous deletion of SMN1 exon 7. The misdiagnosis of these individuals was attributed to the presence of the c.835-17_835-14delCTTT or c.835-17C > G variants in SMN1 intron 6, which affect the amplification of SMN1 exon 7 during MLPA-P060 and qPCR testing. However, MLPA-P021 and NGS analyses were unaffected by these variants. These results support that additional detection methods should be employed in cases where the SMN1 copy number is ambiguous to minimize the misdiagnosis of SMA.

4.
Neuromuscul Disord ; 33(5): 382-390, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023488

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by biallelic variants of the survival motor neuron 1 (SMN1) gene. In this study, our aim was to make a molecular diagnosis in two patients with SMA carrying only one SMN1 copy number. Using ultra-long read sequencing (Ultra-LRS), 1415 bp deletion and 3348 bp deletion of the SMN1 gene were identified in patient 1 and the father of patient 2, respectively. Ultra-LRS revealed two novel deletions, starting from the SMN1 promoter to intron 1. It also accurately provided the location of the deletion breakpoints in the SMN1 gene: chr5 g.70,924,798-70,926,212 for a 1415 bp deletion; chr5 g.70,922,695-70,926,042 for a 3348 bp deletion. By analyzing the breakpoint junctions, we identified that these genomic sequences were composed of Alu sequences, including AluJb, AluYm1, AluSq, and AluYm1, indicating that Alu-mediated rearrangements are a mechanism of SMN1 deletion events. In addition, full-length SMN1 transcripts and SMN protein in patient 1 were significantly decreased (p < 0.01), suggesting that a 1415 bp deletion that included the transcription and translation initiation sites of the SMN1 gene had severe consequences for SMN expression. Ultra-LRS can easily distinguish highly homozygous genes compared to other detection technologies, which is useful for detecting SMN1 intragenic mutations, to quickly discover structural rearrangements and to precisely present the breakpoint positions.


Asunto(s)
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Mutación , Homocigoto , Regiones Promotoras Genéticas , Neuronas Motoras , Proteína 1 para la Supervivencia de la Neurona Motora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA