Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Small ; 20(1): e2304541, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37661573

RESUMEN

The current development of single electrocatalyst with multifunctional applications in overall water splitting (OWS) and zinc-air batteries (ZABs) is crucial for sustainable energy conversion and storage systems. However, exploring new and efficient low-cost trifunctional electrocatalysts is still a significant challenge. Herein, the antiperovskite CuNCo3 prototype, that is proved to be highly efficient in oxygen evolution reaction but severe hydrogen evolution reaction (HER) performance, is endowed with optimum HER catalytic properties by in situ-derived interfacial engineering via incorporation of molybdenum (Mo). The as-prepared Mo-CuNCo3 @CoN nanowires achieve a low HER overpotential of 58 mV@10 mA cm-2 , which is significantly higher than the pristine CuNCo3 . The assembled CuNCo3 -antiperovskite-based OWS not only entails a low overall voltage of 1.56 V@10 mA cm-2 , comparable to most recently reported metal-nitride-based OWS, but also exhibits excellent ZAB cyclic stability up to 310 h, specific capacity of 819.2 mAh g-1 , and maximum power density of 102 mW cm-2 . The as-designed antiperovskite-based ZAB could self-power the OWS system generating a high hydrogen rate, and creating opportunity for developing integrated portable multifunctional energy devices.

2.
Small ; 19(32): e2300807, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086117

RESUMEN

Designing a facile strategy to prepare catalysts with highly active sites are challenging for large-scale implementation of electrochemical hydrogen production. Herein, a straightforward and eco-friendly method by high-energy mechanochemical ball milling for mass production of atomic Ru dispersive in defective MoS2 catalysts (Ru1 @D-MoS2 ) is developed. It is found that single atomic Ru doping induces the generation of S vacancies, which can break the electronic neutrality around Ru atoms, leading to an asymmetrical distribution of electrons. It is also demonstrated that the Ru1 @D-MoS2 exhibits superb alkaline hydrogen evolution enhancement, possibly attributing to this electronic asymmetry. The overpotential required to deliver a current density of 10 mA cm-2 is as low as 107 mV, which is much lower than that of commercial MoS2 (C-MoS2 , 364 mV). Further density functional theory (DFT) calculations also support that the vacancy-coupled single Ru enables much higher electronic distribution asymmetry degree, which could regulate the adsorption energy of intermediates, favoring the water dissociation and the adsorption/desorption of H*. Besides, the long-term stability test under 500 mA cm-2 further confirms the robust performance of Ru1 @D-MoS2 . Our strategy provides a promising and practical way towards large-scale preparation of advanced HER catalysts for commercial applications.

3.
Chemistry ; 27(35): 9087-9093, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33876844

RESUMEN

A significant obstacle in the large-scale applications of sodium borohydride (NaBH4 ) for hydrogen storage is its high cost. Herein, we report a new method to synthesize NaBH4 by ball milling hydrated sodium tetraborate (Na2 B4 O7 ⋅ 10H2 O) with low-cost Al or Al88 Si12 , instead of Na, Mg or Ca. An effective strategy is developed to facilitate mass transfer during the reaction by introducing NaH to enable the formation of NaAlO2 instead of dense Al2 O3 on Al surface, and by using Si as a milling additive to prevent agglomeration and also break up passivation layers. Another advantage of this process is that hydrogen in Na2 B4 O7 ⋅ 10H2 O serves as a hydrogen source for NaBH4 generation. Considering the low cost of the starting materials and simplicity in operation, our studies demonstrate the potential of producing NaBH4 in a more economical way than the commercial process.

4.
Small ; 16(7): e1906634, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31967721

RESUMEN

Lithium-sulfur batteries (LSBs) are considered as one of the best candidates for novel rechargeable batteries due to their high energy densities and abundant required materials. However, the poor conductivity and large volume expansion of sulfur and the "shuttle effect" of lithium polysulfides (LPSs) have significantly hindered the development and successful commercialization of LSBs. Bean-like B,N codoped carbon nanotubes loaded with Co nanoparticles (Co@BNTs), which can act as advanced sulfur hosts for the novel LSB cathode, are fabricated. Uniform graphitic nanotubes improve the conductivity of the electrode and load more electroactive sulfur and buffer volume expansion during the electrochemical reaction. In addition, loaded Co nanoparticles and codoped B,N sites can significantly suppress the "shuttle effect" of LPSs with strong chemical interaction. It is established that the Co nanoparticles and codoped B,N can provide more active sites to catalyze the redox reaction of sulfur cathode. This stable Co@BNTs-S cathode displays an exceptional electrochemical performance (1160 mA h g-1 after 200 cycles at 0.1 C) and outstanding stable cycle performance (1008 mA h g-1 after 400 cycles at 1.0 C with an extremely low attenuation rate of 0.038% per cycle).

5.
Angew Chem Int Ed Engl ; 59(22): 8623-8629, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32080947

RESUMEN

Sodium borohydride (NaBH4 ) is among the most studied hydrogen storage materials because it is able to deliver high-purity H2 at room temperature with controllable kinetics via hydrolysis; however, its regeneration from the hydrolytic product has been challenging. Now, a facile method is reported to regenerate NaBH4 with high yield and low costs. The hydrolytic product NaBO2 in aqueous solution reacts with CO2 , forming Na2 B4 O7 ⋅10 H2 O and Na2 CO3 , both of which are ball-milled with Mg under ambient conditions to form NaBH4 in high yield (close to 80 %). Compared with previous studies, this approach avoids expensive reducing agents such as MgH2 , bypasses the energy-intensive dehydration procedure to remove water from Na2 B4 O7 ⋅10 H2 O, and does not require high-pressure H2 gas, therefore leading to much reduced costs. This method is expected to effectively close the loop of NaBH4 regeneration and hydrolysis, enabling a wide deployment of NaBH4 for hydrogen storage.

6.
Chemistry ; 25(49): 11486-11493, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31237004

RESUMEN

As anode materials for high-performance Li-ion batteries, peapod-like Ge-based composites, including Ge, a Li-inactive conducting Cu3 Ge, and a porous carbon matrix are synthesized simply by annealing CuGeO3 @dopamine in a H2 /Ar atmosphere. The introduction of the carbon layer and inactive alloying phase Cu3 Ge not only enhances the electrical conductivity of the Ge anode, but also reduces the volume change of Ge during the cell cycle as a buffer. In particular, the anode of this peapod-like Cu3 Ge/Ge@C shows an excellent long cycle life as well as outstanding capacity performance, with a discharge specific capacity up to 934 mA h g-1 after 500 cycles.

7.
Chemphyschem ; 20(10): 1316-1324, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30830995

RESUMEN

Theoretically, the hydrolysis of MgLi and MgH2 -LiH can produce 9.6 and 17.5 wt.% hydrogen (water is not included in the calculation), respectively. The ball-milling method is commonly used to refine the particle size and thus may improve hydrolysis kinetics. However, Mg and Li will be easily agglomerated, which means that direct ball-milling could not refine MgLi. In this work, we introduced 10 wt.% expanded graphite into the ball-milling process to synthesize refined MgLi alloy samples. Further studies showed that MgLi-10 wt.% expanded graphite can produce 966 mL/g hydrogen within 3 min in 0.5 M MgCl2 solution. The MgLi hydrides were synthesized by reactive ball milling under 3 MPa H2 and their hydrolysis performance was investigated. Moreover, the sawed powder was milled in 3 MPa H2 for 6 h and then hydrogenated in 3 MPa H2 at 380 °C; it can produce 1542 and 1773 mL/g (15.8 wt.%) hydrogen in 5 and 30 min with mild kinetics, respectively, and the activation energy of the hydrolysis reaction is 24.6 kJ/mol in 1 M MgCl2 solution. The findings here open a new avenue to the development of refined MgLi alloys and hydrides for hydrogen generation through a controllable hydrolysis process.

8.
Small ; 14(30): e1800793, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29947038

RESUMEN

An anode of self-supported FeP@C nanotube arrays on carbon fabric (CF) is successfully fabricated via a facile template-based deposition and phosphorization route: first, well-aligned FeOOH nanotube arrays are simply obtained via a solution deposition and in situ etching route with hydrothermally crystallized (Co,Ni)(CO3 )0.5 OH nanowire arrays as the template; subsequently, these uniform FeOOH nanotube arrays are transformed into robust carbon-coated Fe3 O4 (Fe3 O4 @C) nanotube arrays via glucose adsorption and annealing treatments; and finally FeP@C nanotube arrays on CF are achieved through the facile phosphorization of the oxide-based arrays. As an anode for lithium-ion batteries (LIBs), these FeP@C nanotube arrays exhibit superior rate capability (reversible capacities of 945, 871, 815, 762, 717, and 657 mA h g-1 at 0.1, 0.2, 0.4, 0.8, 1.3, and 2.2 A g-1 , respectively, corresponding to area specific capacities of 1.73, 1.59, 1.49, 1.39, 1.31, 1.20 mA h cm-2 at 0.18, 0.37, 0.732, 1.46, 2.38, and 4.03 mA cm-2 , respectively) and a stable long-cycling performance (a high specific capacity of 718 mA h g-1 after 670 cycles at 0.5 A g-1 , corresponding to an area capacity of 1.31 mA h cm-2 at 0.92 mA cm-2 ).

9.
Chemistry ; 24(13): 3283-3288, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282777

RESUMEN

In recent years, various platinum-free catalysts for the oxygen reduction reaction (ORR) have attracted great attention due to the limited natural abundance and high cost of platinum. Herein, Ag@N-C (N-C: nitrogen-doped carbon) nanorods for the ORR were synthesized through chemical polymerization and pyrolysis methods by using pyrrole and silver nitrate as raw materials. Pyrolysis could significantly increase the specific surface area of as-synthesized catalysts and convert pyrrolic-N into graphitic-N and pyridinic-N. The results of electrochemical tests show that the Ag@N-C-900 catalyst (pyrolyzed at 900 °C) exhibits highly efficient ORR catalytic activity, improved stability, and better methanol resistance in comparison to that of Pt/C catalyst in alkaline media.

10.
Chemistry ; 23(32): 7710-7718, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28258967

RESUMEN

The hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR) play important roles in many energy conversion and storage systems. To accelerate the reaction processes, there is a constant need for efficient new catalysts. In the present work, we have developed a facile pyrolysis-based process for the co-synthesis of palladium-cobalt nanoparticles supported on carbon nanotubes (Pd-CoCNTs), which exhibit superior catalytic activity for the HER and enhanced ORR performance. Non-agglomerated Pd nanoparticles of diameters 2-4 nm are uniformly distributed on the surface of CoCNTs, while the inner Co particles are an essential element in forming the framework of the CoCNTs. Compared to the Pd-free N-rich CoCNTs, Pd-CoCNTs have a more defective surface with a larger electrochemically active surface area (ECSA), and show enhanced ORR activity, outstanding methanol tolerance, and long-term stability in alkaline solution. At a low Pd loading of 0.0292 mg cm-2 , the Pd-CoCNTs require overpotentials of 0.024 V and 0.215 V to catalyze the HER and to drive a current density of 50 mA cm-2 in acidic solution, respectively. The palladium nanoparticles on the surface of the CoCNTs are considered to be highly active sites for HER, based on the results of control experiments, and it is easy to adjust the catalytic activity of the Pd-CoCNTs by changing the concentration of Pd therein. The proposed method provides a means of fabricating efficient bifunctional catalysts with controllable low contents of precious metals.

11.
Chemistry ; 23(22): 5198-5204, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28261892

RESUMEN

To alleviate the capacity degradation of anode materials for Li-ion batteries, caused by serious volume expansion and particle aggregation, intensive attention has been devoted to the rational design and fabrication of novel anode architectures. Herein, self-supported CoP nanorod arrays have been facilely synthesized using hydrothemally deposited Co(CO3 )0.5 (OH)⋅0.11 H2 O nanorod arrays as the precursor, through a gas-phase phosphidation method. As the anode for Li-ion batteries, such 3D interconnected CoP nanorod arrays show an initial discharge capacity of 1067 mAh g-1 and a high reversible charge capacity of 737 mAh g-1 at 0.4 Ag-1 . After 400 cycles, their specific capacity can reach 510 mAh g-1 ; even after 900 cycles, they can still deliver a specific capacity of 390 mAh g-1 . CoP//LiCoO2 full-cells also exhibit a high reversible capacity of 400 mAh g-1 after 50 cycles. These unique 3D interconnected CoP nanorod arrays also show ultrastable cycling performance over 500 cycles when used as the anode in a Na-ion battery.

12.
Nanotechnology ; 28(11): 115604, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28085007

RESUMEN

Efficient preparation of two-dimensional materials is still a great challenge. These materials possess unique electrical, optical, and thermal properties. In this study, few-layer MoS2 nanosheets and nanoflakes were exfoliated by the hydrolysis reaction of LiBH4. First, the layered MoS2 powder materials were mixed with LiBH4 to obtain a homogeneous powder mixture, and then the mixture was heated above the melting point of LiBH4 under 300 °C and 4 MPa H2 for 2 h, during which the layered materials were curled by liquid LiBH4. In the subsequent hydrolysis of LiBH4, the layered materials were split into nanosheets by H2 gas generation. The obtained MoS2 nanosheets show almost uniform thickness of ~4 nm, with a width of 2-10 µm and a yield of more than 1.5 wt.%. The effectiveness of this method has also been verified by the preparation of few-layer h-BN. This work provides a new high-yield route to producing two-dimensional materials.

13.
Chemistry ; 21(42): 14931-6, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26315468

RESUMEN

Due to its high hydrogen density (14.8 wt %) and low dehydrogenation peak temperature (130 °C), Zr(BH4 )4 ⋅8 NH3 is considered to be one of the most promising hydrogen-storage materials. To further decrease its dehydrogenation temperature and suppress its ammonia release, a strategy of introducing LiBH4 and Mg(BH4 )2 was applied to this system. Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 composites showed main dehydrogenation peaks centered at 81 and 106 °C as well as high hydrogen purities of 99.3 and 99.8 mol % H2 , respectively. Isothermal measurements showed that 6.6 wt % (within 60 min) and 5.5 wt % (within 360 min) of hydrogen were released at 100 °C from Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , respectively. The lower dehydrogenation temperatures and improved hydrogen purities could be attributed to the formation of the diammoniate of diborane for Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 , and the partial transfer of NH3 groups from Zr(BH4 )4 ⋅8 NH3 to Mg(BH4 )2 for Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , which result in balanced numbers of BH4 and NH3 groups and a more active H(δ+) ⋅⋅⋅(-δ) H interaction. These advanced dehydrogenation properties make these two composites promising candidates as hydrogen-storage materials.

14.
ACS Appl Mater Interfaces ; 15(25): 30372-30382, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37318842

RESUMEN

The practical applications of MgH2 as a high-density hydrogen carrier depend heavily on efficient and low-cost catalysts to accelerate the dehydriding/hydriding reactions at moderate temperatures. In the present work, this issue is addressed by synthesizing Nb-doped TiO2 solid-solution-type catalysts that dramatically improve the hydrogen sorption performances of MgH2. The catalyzed MgH2 can absorb 5 wt % of H2 even at room temperature for 20 s, release 6 wt % of H2 at 225 °C within 12 min, and the complete dehydrogenation can be achieved at 150 °C under a dynamic vacuum atmosphere. Density functional theory calculations reveal that Nb doping introduces Nb 4d orbitals with stronger interaction with H 1s into the density of states of TiO2. This considerably enhances both the adsorption and dissociation ability of the H2 molecule on the catalysts surface and the hydrogen diffusion across the specific Mg/Ti(Nb)O2 interface. The successful implementation of solid solution-type catalysts in MgH2 offers a demonstration and inspiration for the development of high-performance catalysts and solid-state hydrogen storage materials.

15.
ACS Appl Mater Interfaces ; 15(17): 20917-20924, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37096938

RESUMEN

Silicon has emerged as a competitive candidate for hydrolytic hydrogen production due to its high theoretical hydrogen yield, low cost, and on-demand availability. However, the hydrolysis reaction is extremely restrained by passivated SiO2, including the original one on the Si surface and the generated one during hydrolysis, and almost no hydrogen is produced in pure water. Herein, the original SiO2 surface has been effectively removed by milling micro-Si mixed with a small amount of Li metal and NaCl. An artificial soluble interface on Si has been established containing Li2SiO3, Li, and NaCl. Once micro-Si is placed into water, fresh Si surface can be exposed and a weak LiOH solution can be generated due to the fast dissolution of the interface layer, resulting in the rapid liberation of hydrogen gas. Accordingly, the modified micro-Si displays a significantly enhanced hydrogen production in pure water at 30 °C (1213 mL g-1 H2 within 3.0 h), which is 2.0 and 4.7 times higher than that observed for ball-milled Si and raw Si in 0.06 M LiOH solution, respectively. In addition, it also exhibited an outstanding operation compatibility for practical uses. This work has proposed a green, effective, and scalable strategy to promote hydrogen production from the hydrolysis of Si-based systems.

16.
Inorg Chem ; 51(5): 2976-83, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22356539

RESUMEN

The structural and hydrogen storage properties of (Nd(1.5)Mg(0.5))Ni(7)-based alloys (i.e., A(2)B(7)-type) with a coexistence of two structures (hexagonal 2H and rhombohedral 3R) are investigated in this study. In both 2H- and 3R-type A(2)B(7) structures, Mg atoms occupy Nd sites of Laves-type AB(2) subunits rather than those of AB(5) subunits because Mg substitution for Nd in the AB(2) subunits more significantly strengthens the ionic bond in the system. An increase in the A-atomic radius or the B-atomic radius stabilizes the 2H structure, but a decrease in the A-atomic radius or the B-atomic radius is favorable for formation of the 3R structure. The 2H-A(2)B(7) and 3R-A(2)B(7) phases in each alloy have quite similar equilibrium pressures upon hydrogen absorption and desorption, which show a linear relationship with the average subunit volume. The hydriding enthalpy for the (Nd(1.5)Mg(0.5))Ni(7) compound is about -29.4 kJ/mol H(2) and becomes more negative with partial substitution of La for Nd and Co/Cu for Ni but less negative with partial substitution of Y for Nd.

17.
Chem Commun (Camb) ; 58(91): 12724-12727, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314285

RESUMEN

Phenylphosphonic acid (PPOA) has been proposed as a new additive for carbonate electrolytes, in which the complexation reaction between PPOA and Li+ reduces the nucleus size and boosts the nucleation quantity during the plating process. Thus, enhanced cycling stability is obtained in both symmetric cells and full cells.

18.
Nanomicro Lett ; 13(1): 134, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34138371

RESUMEN

As an environmentally friendly and high-density energy carrier, hydrogen has been recognized as one of the ideal alternatives for fossil fuels. One of the major challenges faced by "hydrogen economy" is the development of efficient, low-cost, safe and selective hydrogen generation from chemical storage materials. In this review, we summarize the recent advances in hydrogen production via hydrolysis and alcoholysis of light-metal-based materials, such as borohydrides, Mg-based and Al-based materials, and the highly efficient regeneration of borohydrides. Unfortunately, most of these hydrolysable materials are still plagued by sluggish kinetics and low hydrogen yield. While a number of strategies including catalysis, alloying, solution modification, and ball milling have been developed to overcome these drawbacks, the high costs required for the "one-pass" utilization of hydrolysis/alcoholysis systems have ultimately made these techniques almost impossible for practical large-scale applications. Therefore, it is imperative to develop low-cost material systems based on abundant resources and effective recycling technologies of spent fuels for efficient transport, production and storage of hydrogen in a fuel cell-based hydrogen economy.

19.
RSC Adv ; 10(32): 19027-19033, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35518327

RESUMEN

Ammonia borane (AB, NH3BH3) is considered as one of the most promising hydrogen storage materials for proton exchange membrane fuel cells due to its high theoretical hydrogen capacity under moderate temperatures. Unfortunately, its on-board application is hampered by the sluggish kinetics, volatile byproducts and harsh conditions for reversibility. In this work, AB and AlH3 were simultaneously infiltrated into a carbon nanotube array (CMK-5) to combine the synergistic effect of alane with nanoconfinement for improving the dehydrogenation properties of AB. Results showed that the transformation from AB to DADB started at room temperature, which promoted AB to release 9.4 wt% H2 within 10 min at a low temperature of 95 °C. Moreover, the entire suppression of all harmful byproducts was observed.

20.
ChemSusChem ; 13(10): 2709-2718, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32141714

RESUMEN

The alcoholysis of CaMg2 -based materials for hydrogen generation is reported. Compared to hydrolysis in water, hydrogen supply from alcoholysis shows an excellent potential for outdoor applications, which not only bypasses the formation of passivation layers deposited on the surface of particles but also breaks the temperature bottleneck in which hydrolysis occurs over 0 °C. To remove the troublesome freezing issue of the water solution system in low-temperature conditions, here, instead of pure methanol, methanol/water and methanol/ethanol solutions are applied to react with CaMg2 alloy (CM2 ) and its hydrides (H-CM2 ) for hydrogen generation. Compared with pure water and ethanol, the reaction of CaMg2 -based materials with methanol possesses much faster reaction kinetics and gives a considerable hydrogen yield. CM2 can generate 858 mL H 2 g-1 within only 3 min at room temperature as it reacts vigorously with methanol, as opposed to a low hydrogen yield with ethanol and water (395 and 224 mL H 2 g-1 within 180 min, respectively) under the same conditions. Even at -20 °C, there is still over 600 mL H 2 g-1 released at a conversion rate of 70.7 % within 100 min for methanolysis, which shows its prominent advantage for hydrogen production, especially in winter or subzero areas. Interestingly, the methanolysis byproducts can transform into metal hydroxides and methanol in the reaction with water, and the methanol may be separated and reused as an intermediate. Moreover, the hydrogen behavior of CaMg2 methanolysis can be well controlled by tailoring the components of the solutions to deliver a promising hydrogen supply system for the hydrogen economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA