RESUMEN
Although enterocytes are capable of innate immune responses, the intestinal epithelium is normally tolerant to commensal bacteria. To elucidate the mechanisms of tolerance, we examined the effect of preexposure to LPS on activation of p38, c-Jun, and NF-kappaB in enterocytes by several inflammatory and stress stimuli. Shortly after the initial LPS challenge, enterocytes become tolerant to restimulation with LPS or CpG DNA, but not with IL-17 or UV. The state of tolerance, which lasts 20-26 h, temporally coincides with LPS-induced expression of the anti-inflammatory ubiquitin-editing enzyme A20. Small interfering RNA silencing of A20 prevents tolerance, whereas ectopic expression of A20 blocks responses to LPS and CpG DNA, but not to IL-17 or UV. A20 levels in the epithelium of the small intestine are low at birth and following gut decontamination with antibiotics, but high under conditions of bacterial colonization. In the small intestine of adult rodents, A20 prominently localizes to the luminal interface of villus enterocytes. Lower parts of the crypts display relatively low levels of A20, but relatively high levels of phospho-p38. Gut decontamination with antibiotics reduces the levels of both A20 and phospho-p38. Along with the fact that A20-deficient mice develop severe intestinal inflammation, our results indicate that induction of A20 plays a key role in the tolerance of the intestinal epithelium to TLR ligands and bacteria.
Asunto(s)
Cisteína Endopeptidasas/inmunología , Enterocitos/inmunología , Tolerancia Inmunológica , Péptidos y Proteínas de Señalización Intracelular/inmunología , Lipopolisacáridos/inmunología , Animales , Islas de CpG , Cisteína Endopeptidasas/genética , Gastroenteritis/etiología , Interleucina-17 , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Activación Transcripcional/efectos de los fármacos , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
IbeA in meningitic Escherichia coli K1 strains has been described previously for its role in invasion of BMECs (brain microvascular endothelial cells). Vimentin was identified as an IbeA-binding protein on the surface of HBMECs (human BMECs). In the present study, we demonstrated that vimentin is a primary receptor required for IbeA+ E. coli K1-induced signalling and invasion of HBMECs, on the basis of the following observations. First, E44 (IbeA+ E. coli K1 strain) invasion was blocked by vimentin inhibitors (withaferin A and acrylamide), a recombinant protein containing the vimentin head domain and an antibody against the head domain respectively. Secondly, overexpression of GFP (green fluorescent protein)-vimentin and GFP-VDM (vimentin head domain deletion mutant) significantly increased and decreased bacterial invasion respectively. Thirdly, bacterial invasion was positively correlated with phosphorylation of vimentin at Ser82 by CaMKII (Ca2+/calmodulin-dependent protein kinase II) and IbeA+ E. coli-induced phosphorylation of ERK (extracellular-signal-regulated kinase). Blockage of CaMKII by KN93 and inhibition of ERK1/2 phosphorylation by PD098059 resulted in reduced IbeA+ E. coli invasion. Fourthly, IbeA+ E. coli and IbeA-coated beads induced the clustering of vimentin that was correlated with increased entry of bacteria and beads. Lastly, IbeA+ E. coli K1 invasion was inhibited by lipid-raft-disrupting agents (filipin and nystatin) and caveolin-1 siRNA (small interfering RNA), suggesting that caveolae/lipid rafts are signalling platforms for inducing IbeA-vimentin-mediated E. coli invasion of HBMECs. Taken together, the present studies suggest that a dynamic and function-related interaction between IbeA and its primary receptor vimentin at HBMEC membrane rafts leads to vimentin phosphorylation and ERK-mediated signalling, which modulate meningitic E. coli K1 invasion.
Asunto(s)
Encéfalo/irrigación sanguínea , Endotelio Vascular/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Vimentina/fisiología , Acrilamida/farmacología , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Caveolina 1/antagonistas & inhibidores , Caveolina 1/genética , Caveolina 1/metabolismo , Ergosterol/análogos & derivados , Ergosterol/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inmunoprecipitación , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vimentina/antagonistas & inhibidores , WitanólidosRESUMEN
Pathogenic yeast Cryptococcus neoformans causes devastating cryptococcal meningoencephalitis. Our previous studies demonstrated that C. neoformans hyaluronic acid was required for invasion into human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. In this report, we demonstrate that C. neoformans hyaluronic acid interacts with CD44 on HBMEC. Our results suggest that HBMEC CD44 is a primary receptor during C. neoformans infection, based on the following observations. First, anti-CD44 neutralizing antibody treatment was able to significantly reduce C. neoformans association with HBMEC. Second, C. neoformans association was considerably impaired using either CD44-knock-down HBMEC or C. neoformans hyaluronic acid-deficient strains. Third, overexpression of CD44 in HBMEC increased their association activity towards C. neoformans. Fourth, confocal microscopic images showed that CD44 was enriched at and around the C. neoformans association sites. Fifth, upon C. neoformans and HBMEC engagement, a subpopulation of CD44 and actin translocated to the host membrane rafts. Our results highlight the interactions between C. neoformans hyaluronic acid and host CD44 and the dynamic results of these interactions, which may represent events during the adhesion and entry of C. neoformans at HBMEC membrane rafts.
Asunto(s)
Criptococosis/microbiología , Cryptococcus neoformans/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Endotelio Vascular/metabolismo , Endotelio Vascular/microbiología , Receptores de Hialuranos/metabolismo , Encéfalo/irrigación sanguínea , Membrana Celular/metabolismo , Células Cultivadas , Cryptococcus neoformans/química , Interacciones Huésped-Patógeno , Humanos , Ácido Hialurónico/metabolismo , Meningoencefalitis/microbiologíaRESUMEN
Pathogenic fungus Cryptococcus neoformans has a predilection for the central nervous system causing devastating meningoencephalitis. Traversal of C. neoformans across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of C. neoformans. Our previous studies have shown that the CPS1 gene is required for C. neoformans adherence to the surface protein CD44 of human brain microvascular endothelial cells (HBMEC), which constitute the BBB. In this report, we demonstrated that C. neoformans invasion of HBMEC was blocked in the presence of G109203X, a protein kinase C (PKC) inhibitor, and by overexpression of a dominant-negative form of PKCalpha in HBMEC. During C. neoformans infection, phosphorylation of PKCalpha was induced and the PKC enzymatic activity was detected in the HBMEC membrane fraction. Our results suggested that the PKCalpha isoform might play a crucial role during C. neoformans invasion. Immunofluorescence microscopic images showed that induced phospho-PKCalpha colocalized with beta-actin on the membrane of HBMEC. In addition, cytochalasin D (an F-filament-disrupting agent) inhibited fungus invasion into HBMEC in a dose-dependent manner. Furthermore, blockage of PKCalpha function attenuated actin filament activity during C. neoformans invasion. These results suggest a significant role of PKCalpha and downstream actin filament activity during the fungal invasion into HBMEC.
Asunto(s)
Barrera Hematoencefálica/enzimología , Cryptococcus neoformans/patogenicidad , Endotelio Vascular/enzimología , Meningitis Criptocócica/enzimología , Proteína Quinasa C-alfa/metabolismo , Citoesqueleto de Actina/metabolismo , Barrera Hematoencefálica/microbiología , Barrera Hematoencefálica/patología , Capilares/enzimología , Capilares/microbiología , Capilares/patología , Células Cultivadas , Endotelio Vascular/microbiología , Endotelio Vascular/patología , Activación Enzimática , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Meningitis Criptocócica/microbiología , Meningitis Criptocócica/patología , Fosforilación , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/genéticaRESUMEN
Neuregulin-1 (Nrg-1) contains an intracellular domain (Nrg-ICD) that translocates into the nucleus, where it may regulate gene expression upon neuronal depolarization. However, the identity of its target promoters and the mechanisms by which it regulates transcription have been elusive. Here we report that, in the mouse cochlea, synaptic activity increases the level of nuclear Nrg-ICD and upregulates postsynaptic density protein-95 (PSD-95), a scaffolding protein that is enriched in post-synaptic structures. Nrg-ICD enhances the transcriptional activity of the PSD-95 promoter by binding to a zinc-finger transcription factor, Eos. The Nrg-ICD-Eos complex induces endogenous PSD-95 expression in vivo through a signaling pathway that is mostly independent of gamma-secretase regulation. This upregulation of PSD-95 expression by the Nrg-ICD-Eos complex provides a molecular basis for activity-dependent synaptic plasticity.
Asunto(s)
Proteínas Portadoras/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neurregulina-1/fisiología , Neuronas/fisiología , Transcripción Genética/fisiología , Estimulación Acústica/métodos , Animales , Línea Celular , Cóclea/citología , Cóclea/fisiología , Cóclea/efectos de la radiación , Proteínas de Unión al ADN/fisiología , Homólogo 4 de la Proteína Discs Large , Ensayo de Cambio de Movilidad Electroforética/métodos , Espacio Extracelular/metabolismo , Espacio Extracelular/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Genes Reporteros/fisiología , Guanilato-Quinasas , Humanos , Factor de Transcripción Ikaros , Inmunohistoquímica/métodos , Inmunoprecipitación/métodos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones , Mutagénesis , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Cloruro de Potasio/farmacología , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/fisiología , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Factores de Transcripción/fisiología , Transfección/métodosRESUMEN
Seizures may exert pathophysiological effects on dendritic spines, but the molecular mechanisms mediating these effects are poorly understood. Actin represents a major structural protein of dendritic spines, and actin filaments (F-actin) can be depolymerized by the regulatory molecule, cofilin, leading to structural or functional changes in spines in response to normal physiological activity. To investigate mechanisms by which pathophysiological stimuli may affect dendritic spine structure and function, we examined changes in F-actin and cofilin in hippocampus due to 4-aminopyridine (4-AP)-induced seizures/epileptiform activity in vivo and in vitro and investigated possible structural correlates of these changes in actin dynamics. Within an hour of induction, seizure activity caused both a significant decrease in F-actin labeling, indicating depolymerization of F-actin, and a corresponding decrease in phosphorylated cofilin, signifying an increase in cofilin activity. However, 4-AP seizures had no overt short-term structural effects on dendritic spine density. By comparison, high potassium caused a more dramatic decrease in cofilin and an immediate dendritic beading and loss of dendritic spines. These findings indicate that activation of cofilin and depolymerization of F-actin represent mechanisms by which seizures may exert pathophysiological modulation of dendritic spines. In addition to affecting non-structural functions of spines, the degree to which overt structural changes occur with actin depolymerization is dependent on the severity and type of the pathophysiological stimulus.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Hipocampo/patología , Neuronas/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología , 4-Aminopiridina , Animales , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/patología , Potasio/farmacología , Convulsiones/inducido químicamenteRESUMEN
One of the major obstacles hindering the progress of studies on mammalian cochlear physiology is the inaccessibility of inner ear cells located in a complex structure of the bony labyrinth. We describe here a technique to record cellular fluorescent signals from any identified inner ear cells in cochlear slices and hemicochleae. Cochlear slices were obtained from postnatal rats (P0-P7) before the cochlea completely ossify, and hemicochleae were cut from older animals (P7-adult). Individual inner ear cells were visually identified using infrared differential interference contrast or oblique illumination optics. Techniques were developed for either bulk-loading cells or loading selected single cells with Ca(2+) indicator dyes, and for maintaining functional viability of cochlear slices/hemicochleae for recordings. Robust and reliable responses of ligand-gated receptors were recorded from individual inner ear cells (e.g. hair cells, spiral ganglion neurons etc.) for at least 24 h after slices/hemicochleae were cut by an oscillating tissue slicer. The technique described here allowed direct observations of [Ca(2+)](i) activities from multiple cells simultaneously in situ, thus providing a feasible way to study the intercellular communication or networking activities from identified cells in the inner ear.
Asunto(s)
Señalización del Calcio/fisiología , Procesamiento Automatizado de Datos/métodos , Electrofisiología/métodos , Colorantes Fluorescentes , Células Ciliadas Auditivas Internas/fisiología , Técnicas de Cultivo de Órganos/métodos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Animales Recién Nacidos , Señalización del Calcio/efectos de los fármacos , Disección/métodos , Procesamiento Automatizado de Datos/instrumentación , Electrofisiología/instrumentación , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Células Ciliadas Auditivas Internas/crecimiento & desarrollo , Células Ciliadas Auditivas Internas/ultraestructura , Masculino , Ratones , Microscopía Electrónica de Rastreo , Técnicas de Cultivo de Órganos/instrumentación , Potasio/metabolismo , Potasio/farmacología , Ratas , Ratas Sprague-DawleyRESUMEN
During the development of Escherichia coli K1 meningitis, interaction between E. coli invasion protein IbeA and surface protein(s) on human brain microvascular endothelial cells (HBMEC) is required for invasion and IbeA-mediated signaling. Here, an IbeA-binding protein was identified as polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF). The specific binding was confirmed by ligand overlay assay. The cell surface-expressed PSF was verified by the confocal microscopy. Recombinant PSF blocked E. coli K1 invasion of HBMEC effectively. Overexpression of PSF in the lentivirus-transducted HBMEC significantly enhanced E. coli K1 invasion. These results suggest that IbeA interacts with PSF for the E. coli K1 invasion of HBMEC.
Asunto(s)
Encéfalo/microbiología , Células Endoteliales/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Barrera Hematoencefálica , Encéfalo/irrigación sanguínea , Línea Celular , Humanos , Microscopía Confocal , Datos de Secuencia Molecular , Factor de Empalme Asociado a PTB , Unión ProteicaRESUMEN
Mice with inactivation of the Tuberous sclerosis complex-1 (Tsc1) gene in glia (Tsc1 GFAP CKO mice) have deficient astrocyte glutamate transporters and develop seizures, suggesting that abnormal glutamate homeostasis contributes to neurological abnormalities in these mice. We examined the hypothesis that Tsc1 GFAP CKO mice have elevated extracellular brain glutamate levels that may cause neuronal death, abnormal glutamatergic synaptic function, and associated impairments in behavioral learning. In vivo microdialysis documented elevated glutamate levels in hippocampi of Tsc1 GFAP CKO mice and several cell death assays demonstrated neuronal death in hippocampus and neocortex. Impairment of long-term potentiation (LTP) with tetanic stimulation was observed in hippocampal slices from Tsc1 GFAP CKO mice and was reversed by low concentrations of NMDA antagonist, indicating that excessive synaptic glutamate directly inhibited LTP. Finally, Tsc1 GFAP CKO mice exhibited deficits in two hippocampal-dependent learning paradigms. These results suggest that abnormal glutamate homeostasis predisposes to excitotoxic cell death, impaired synaptic plasticity and learning deficits in Tsc1 GFAP CKO mice.
Asunto(s)
Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Discapacidades para el Aprendizaje/metabolismo , Plasticidad Neuronal/genética , Transmisión Sináptica/genética , Esclerosis Tuberosa/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Homeostasis/genética , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Ratones , Ratones Noqueados , Neocórtex/metabolismo , Neocórtex/fisiopatología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/fisiopatología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genéticaRESUMEN
Epilepsy is associated with significant neurological morbidity, including learning disabilities, motor deficits, and behavioral problems. Although the causes of neurological dysfunction in epilepsy are multifactorial, accumulating evidence indicates that seizures in themselves may directly cause brain injury. Although it is clear that seizures can result in neuronal death, it is likely that under some circumstances seizures can induce more subtle functional or structural alterations in neurons. We induced focal neocortical seizures with 4-aminopyridine in transgenic mice expressing green fluorescent protein in cortical neurons and sequentially imaged individual dendrites in living animals with two-photon laser-scanning microscopy to determine whether these seizures caused acute alterations in dendritic spine morphology. No dendritic alterations were observed in anesthetized animals during electrographic seizures over a 3-hour period. Similarly, in unanesthetized mice, low-stage, clinical electrographic seizures had minimal effect on dendritic spines. More severe, high-stage seizures in unanesthetized mice were associated with a moderate loss of spines and dendritic swelling, but this effect may have been contingent on a synergistic action of phototoxicity from the imaging method itself. Overall, our results suggest that most neocortical seizures have minimal acute effects on dendrites over several hours, but may predispose to dendritic injury under extreme conditions.
Asunto(s)
Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Epilepsia Generalizada/patología , Epilepsia Generalizada/fisiopatología , 4-Aminopiridina , Anestesia , Animales , Convulsivantes , Electroencefalografía , Epilepsia Generalizada/inducido químicamente , Proteínas Fluorescentes Verdes/genética , Rayos Láser , Ratones , Ratones Transgénicos , Neocórtex/patología , Neocórtex/fisiopatología , Bloqueadores de los Canales de Potasio , VigiliaRESUMEN
Over the past decade there has been great interest in the therapeutic potential of brain cooling for epilepsy, stroke, asphyxia and other neurological diseases. However, there is still no consensus regarding the neurophysiological effect(s) of brain cooling. We employed standard physiological techniques and 2-photon microscopy to directly examine the effect of temperature on evoked neurotransmitter release in rat hippocampal slices. We observed a monotonic decline in extracellular synaptic potentials and their initial slope over the temperature range 33-20 degrees C, when the slices were cooled to a new set point in less than 5 s. Imaging the fluorescent synaptic marker FM1-43 with 2-photon microscopy showed that the same cooling protocol dramatically reduced transmitter release between 33 and 20 degrees C. Cooling also reduced the terminal FM1-43 destaining that was induced by direct depolarization with elevated K+, indicating that axonal conduction block cannot account for our observations. The temperature dependence of FM1-43 destaining correlated well with the effect of temperature on field potential slope, compatible with a presynaptic explanation for our electrophysiological observations. Optical measurement of FM1-43 dissociation from cell membranes was not affected by temperature, and rapid cooling of slices loaded with FM1-43 did not increase their fluorescence. Our experiments provide visible evidence that a major neurophysiological effect of cooling in the mammalian brain is a reduction in the efficacy of neurotransmitter release. This presynaptic effect may account for some of the therapeutic benefits of cooling in epilepsy and possibly stroke.
Asunto(s)
Frío , Epilepsia/fisiopatología , Hipocampo/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica , Transmisión Sináptica/fisiología , Animales , Electrofisiología , Epilepsia/terapia , Potenciales Evocados/fisiología , Hipotermia Inducida , Masculino , Técnicas de Cultivo de Órganos , Terminales Presinápticos/fisiología , Ratas , Ratas Sprague-DawleyRESUMEN
It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected subsets of potentiated dendritic spines. Here, we report that F-actin, a major component of the skeletal structure of dendritic spines, may contribute to the regulation of synaptic specificity of protein translocation. We found that the stabilization of F-actin blocked the translocation of GFP-CaMKII and inhibited the diffusion of 3-kDa dextran into spines (in 2-3 weeks cultures). Neuronal activation in hippocampal slices and cultured neurons led to an increase in the activation (decrease in the phosphorylation) of the actin depolymerization factor, cofilin, and a decrease in F-actin. Furthermore, the induction of long-term potentiation by tetanic stimulation induced local transient depolymerization of F-actin both in vivo and in hippocampal slices (8-10 weeks), and this local F-actin depolymerization was blocked by APV, a N-methyl-D-aspartate (NMDA) receptor antagonist. These results suggest that F-actin may play a role in synaptic specificity by allowing protein translocation into only potentiated spines, gated through its depolymerization, which is probably triggered by the activation of NMDA receptors.