Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 16(9): e1009055, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997662

RESUMEN

A major goal in biology is to understand how evolution shapes variation in individual life histories. Genome-wide association studies have been successful in uncovering genome regions linked with traits underlying life history variation in a range of species. However, lack of functional studies of the discovered genotype-phenotype associations severely restrains our understanding how alternative life history traits evolved and are mediated at the molecular level. Here, we report a cis-regulatory mechanism whereby expression of alternative isoforms of the transcription co-factor vestigial-like 3 (vgll3) associate with variation in a key life history trait, age at maturity, in Atlantic salmon (Salmo salar). Using a common-garden experiment, we first show that vgll3 genotype associates with puberty timing in one-year-old salmon males. By way of temporal sampling of vgll3 expression in ten tissues across the first year of salmon development, we identify a pubertal transition in vgll3 expression where maturation coincided with a 66% reduction in testicular vgll3 expression. The late maturation allele was not only associated with a tendency to delay puberty, but also with expression of a rare transcript isoform of vgll3 pre-puberty. By comparing absolute vgll3 mRNA copies in heterozygotes we show that the expression difference between the early and late maturity alleles is largely cis-regulatory. We propose a model whereby expression of a rare isoform from the late allele shifts the liability of its carriers towards delaying puberty. These results exemplify the potential importance of regulatory differences as a mechanism for the evolution of life history traits.


Asunto(s)
Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Secuencias Reguladoras de Ácido Ribonucleico , Salmo salar/fisiología , Factores de Transcripción/metabolismo , Alelos , Empalme Alternativo , Animales , Exones , Femenino , Genotipo , Rasgos de la Historia de Vida , Masculino , Isoformas de Proteínas/genética , Salmo salar/genética , Salmo salar/crecimiento & desarrollo , Maduración Sexual , Testículo/crecimiento & desarrollo , Factores de Transcripción/genética
2.
Mol Ecol ; 30(18): 4505-4519, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34228841

RESUMEN

Sexual maturation timing is a life-history trait central to the balance between mortality and reproduction. Maturation may be triggered when an underlying compound trait, called liability, exceeds a threshold. In many different species and especially fishes, this liability is approximated by growth and body condition. However, environmental vs. genetic contributions either directly or via growth and body condition to maturation timing remain unclear. Uncertainty exists also because the maturation process can reverse this causality and itself affect growth and body condition. In addition, disentangling the contributions of polygenic and major loci can be important. In many fishes, males mature before females, enabling the study of associations between male maturation and maturation-unbiased female liability traits. Using 40 Atlantic salmon families, longitudinal common-garden experimentation, and quantitative genetic analyses, we disentangled environmental from polygenic and major locus (vgll3) effects on male maturation, and sex-specific growth and condition. We detected polygenic heritabilities for maturation, growth, and body condition, and vgll3 effects on maturation and body condition but not on growth. Longitudinal patterns for sex-specific phenotypic liability, and for genetic variances and correlations between sexes suggested that early growth and condition indeed positively affected maturation initiation. However, towards spawning time, causality appeared reversed for males whereby maturation affected growth negatively and condition positively via both the environmental and genetic effects. Altogether, the results indicate that growth and condition are useful traits to study liability for maturation initiation, but only until maturation alters their expression, and that vgll3 contributes to maturation initiation via condition.


Asunto(s)
Rasgos de la Historia de Vida , Salmo salar , Animales , Femenino , Humanos , Masculino , Fenotipo , Reproducción , Salmo salar/genética , Maduración Sexual/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA