Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 130(12): 1441-1444, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28754683

RESUMEN

Plasmodium vivax is the most prevalent parasite species that causes malaria in humans and exclusively infects reticulocytes. Reticulocyte infection is facilitated by P vivax Duffy binding protein (DBP), which utilizes DARC (Duffy antigen receptor for chemokines) as an entry point. However, the selective tropism of P vivax for transferrin receptor (CD71)-positive reticulocytes remained unexplained, given the constitutive expression of DARC during reticulocyte maturation. CD71/RNA double staining of reticulocytes enriched from adult peripheral blood reveals 4 distinct reticulocyte populations: CD71high/RNAhigh (∼0.016%), CD71low/RNAhigh (∼0.059%), CD71neg/RNAhigh (∼0.37%), CD71neg/RNAlow (∼0.55%), and erythrocytes CD71neg/RNAneg (∼99%). We hypothesized that selective association of DBP with a small population of immature reticulocytes could explain the preference of P vivax for reticulocytes. Binding of specific monoclonal anti-DARC antibodies and recombinant DBP to CD71high/RNAhigh reticulocytes was significantly higher compared with other reticulocyte populations and erythrocytes. Interestingly, the total DARC protein throughout reticulocyte maturation was constant. The data suggest that selective exposure of the DBP binding site within DARC is key to the preferential binding of DBP to immature reticulocytes, which is the potential mechanism underlying the preferential infection of a reticulocyte subset by P vivax.


Asunto(s)
Sistema del Grupo Sanguíneo Duffy/química , Sistema del Grupo Sanguíneo Duffy/metabolismo , Espacio Extracelular/química , Plasmodium vivax/fisiología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Reticulocitos/citología , Reticulocitos/metabolismo , Tropismo/fisiología , Especificidad de Anticuerpos/inmunología , Antígenos de Protozoos/metabolismo , Diferenciación Celular , Eritrocitos/parasitología , Humanos , Dominios Proteicos , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad
2.
Blood Adv ; 3(21): 3337-3350, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31698463

RESUMEN

Transfusion of donor-derived red blood cells (RBC) is the most common form of cellular therapy. Donor availability and the potential risk of alloimmunization and other transfusion-related complications may, however, limit the availability of transfusion units, especially for chronically transfused patients. In vitro cultured, customizable RBC would negate these concerns and further increase precision medicine. Large-scale, cost-effective production depends on optimization of culture conditions. We developed a defined medium and adapted our protocols to good manufacturing practice (GMP) culture requirements, which reproducibly provided pure erythroid cultures from peripheral blood mononuclear cells without prior CD34+ isolation, and a 3 × 107-fold increase in erythroblasts in 25 days (or from 100 million peripheral blood mononuclear cells, 2 to 4 mL packed red cells can be produced). Expanded erythroblast cultures could be differentiated to CD71dimCD235a+CD44+CD117-DRAQ5- RBC in 12 days. More than 90% of the cells enucleated and expressed adult hemoglobin as well as the correct blood group antigens. Deformability and oxygen-binding capacity of cultured RBC was comparable to in vivo reticulocytes. Daily RNA sampling during differentiation followed by RNA-sequencing provided a high-resolution map/resource of changes occurring during terminal erythropoiesis. The culture process was compatible with upscaling using a G-Rex bioreactor with a capacity of 1 L per reactor, allowing transition toward clinical studies and small-scale applications.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Diferenciación Celular , Eritroblastos/citología , Eritrocitos/citología , Eritropoyesis , Leucocitos Mononucleares/citología , Técnicas de Cultivo Celular por Lotes/normas , Biomarcadores , Reactores Biológicos , Diferenciación Celular/genética , Proliferación Celular , Eritroblastos/metabolismo , Eritrocitos/metabolismo , Eritropoyesis/genética , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/metabolismo , Cultivo Primario de Células , Reticulocitos/metabolismo , Transcriptoma
3.
Front Physiol ; 9: 829, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050448

RESUMEN

The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA