Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 239-245, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30950824

RESUMEN

Furin, also called proprotein convertase subtilisin/kexin 3 (PCSK3), is a calcium-dependent serine endoprotease that processes a wide variety of proproteins involved in cell function and homeostasis. Dysregulation of furin has been implicated in numerous disease states, including cancer and fibrosis. Mammalian cell expression of the furin ectodomain typically produces a highly glycosylated, heterogeneous protein, which can make crystallographic studies difficult. Here, the expression and purification of nonglycosylated human furin using the BacMam technology and site-directed mutagenesis of the glycosylation sites is reported. Nonglycosylated furin produced using this system retains full proteolytic activity indistinguishable from that of the glycosylated protein. Importantly, the nonglycosylated furin protein reliably forms extremely durable apo crystals that diffract to high resolution. These crystals can be soaked with a wide variety of inhibitors to enable a structure-guided drug-discovery campaign.


Asunto(s)
Apoproteínas/química , Bioquímica/métodos , Furina/química , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , Glicosilación , Células HEK293 , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína
2.
Methods Mol Biol ; 1350: 263-84, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26820862

RESUMEN

Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.


Asunto(s)
Baculoviridae/genética , Reactores Biológicos/virología , Ingeniería Genética/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Animales , Células CHO , Técnicas de Cultivo de Célula , Separación Celular , Cricetinae , Cricetulus , Expresión Génica , Proteínas Recombinantes/aislamiento & purificación , Células Sf9 , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA