Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(3): 431-449, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35997788

RESUMEN

Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).


Asunto(s)
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Am J Pathol ; 193(11): 1776-1788, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36822266

RESUMEN

Retinopathy of prematurity (ROP), a blinding condition affecting preterm infants, is an interruption of retinal vascular maturation that is incomplete when born preterm. Although ROP demonstrates delayed onset following preterm birth, representing a window for therapeutic intervention, there are no curative or preventative measures available for this condition. The in utero environment, including placental function, is increasingly recognized for contributions to preterm infant disease risk. The current study identified a protective association between acute placental inflammation and preterm infant ROP development using logistic regression, with the most significant association found for infants without gestational exposure to maternal preeclampsia and those with earlier preterm birth. Expression analysis of proteins with described ROP risk associations demonstrated significantly decreased placental high temperature requirement A serine peptidase-1 (HTRA-1) and fatty acid binding protein 4 protein expression in infants with acute placental inflammation compared with those without. Within the postnatal peripheral circulation, HTRA-1 and vascular endothelial growth factor-A demonstrated inverse longitudinal trends for infants born in the presence of, compared with absence of, acute placental inflammation. An agnostic approach, including whole transcriptome and differential methylation placental analysis, further identify novel mediators and pathways that may underly protection. Taken together, these data build on emerging literature showing a protective association between acute placental inflammation and ROP development and identify novel mechanisms that may inform postnatal risk associations in preterm infants.


Asunto(s)
Nacimiento Prematuro , Retinopatía de la Prematuridad , Lactante , Recién Nacido , Humanos , Femenino , Embarazo , Recien Nacido Prematuro , Factor A de Crecimiento Endotelial Vascular , Placenta , Edad Gestacional , Inflamación , Factores de Riesgo
3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982708

RESUMEN

Glaucoma is the leading cause of irreversible blindness, affecting 76 million globally. It is characterized by irreversible damage to the optic nerve. Pharmacotherapy manages intraocular pressure (IOP) and slows disease progression. However, non-adherence to glaucoma medications remains problematic, with 41-71% of patients being non-adherent to their prescribed medication. Despite substantial investment in research, clinical effort, and patient education protocols, non-adherence remains high. Therefore, we aimed to determine if there is a substantive genetic component behind patients' glaucoma medication non-adherence. We assessed glaucoma medication non-adherence with prescription refill data from the Marshfield Clinic Healthcare System's pharmacy dispensing database. Two standard measures were calculated: the medication possession ratio (MPR) and the proportion of days covered (PDC). Non-adherence on each metric was defined as less than 80% medication coverage over 12 months. Genotyping was done using the Illumina HumanCoreExome BeadChip in addition to exome sequencing on the 230 patients (1) to calculate the heritability of glaucoma medication non-adherence and (2) to identify SNPs and/or coding variants in genes associated with medication non-adherence. Ingenuity pathway analysis (IPA) was utilized to derive biological meaning from any significant genes in aggregate. Over 12 months, 59% of patients were found to be non-adherent as measured by the MPR80, and 67% were non-adherent as measured by the PDC80. Genome-wide complex trait analysis (GCTA) suggested that 57% (MPR80) and 48% (PDC80) of glaucoma medication non-adherence could be attributed to a genetic component. Missense mutations in TTC28, KIAA1731, ADAMTS5, OR2W3, OR10A6, SAXO2, KCTD18, CHCHD6, and UPK1A were all found to be significantly associated with glaucoma medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10-3) (PDC80). While missense mutations in TINAG, CHCHD6, GSTZ1, and SEMA4G were found to be significantly associated with medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10-3) (MPR80). The same coding SNP in CHCHD6 which functions in Alzheimer's disease pathophysiology was significant by both measures and increased risk for glaucoma medication non-adherence by three-fold (95% CI, 1.62-5.8). Although our study was underpowered for genome-wide significance, SNP rs6474264 within ZMAT4 (p = 5.54 × 10-6) was found to be nominally significant, with a decreased risk for glaucoma medication non-adherence (OR, 0.22; 95% CI, 0.11-0.42)). IPA demonstrated significant overlap, utilizing, both standard measures including opioid signaling, drug metabolism, and synaptogenesis signaling. CREB signaling in neurons (which is associated with enhancing the baseline firing rate for the formation of long-term potentiation in nerve fibers) was shown to have protective associations. Our results suggest a substantial heritable genetic component to glaucoma medication non-adherence (47-58%). This finding is in line with genetic studies of other conditions with a psychiatric component (e.g., post-traumatic stress disorder (PTSD) or alcohol dependence). Our findings suggest both risk and protective statistically significant genes/pathways underlying glaucoma medication non-adherence for the first time. Further studies investigating more diverse populations with larger sample sizes are needed to validate these findings.


Asunto(s)
Glaucoma , Cumplimiento de la Medicación , Humanos , Glaucoma/tratamiento farmacológico , Glaucoma/genética , Presión Intraocular/genética , Progresión de la Enfermedad , Tamaño de la Muestra , Estudios Retrospectivos , Glutatión Transferasa
4.
Proc Natl Acad Sci U S A ; 116(22): 10824-10833, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31072937

RESUMEN

Rod and cone photoreceptors are light-sensing cells in the human retina. Rods are dominant in the peripheral retina, whereas cones are enriched in the macula, which is responsible for central vision and visual acuity. Macular degenerations affect vision the most and are currently incurable. Here we report the generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids differentiated from hESCs using an improved retinal differentiation system. Induced by extracellular matrix, aggregates of hESCs formed single-lumen cysts composed of epithelial cells with anterior neuroectodermal/ectodermal fates, including retinal cell fate. Then, the cysts were en bloc-passaged, attached to culture surface, and grew, forming colonies in which retinal progenitor cell patches were found. Following gentle cell detachment, retinal progenitor cells self-assembled into retinal epithelium-retinal organoid-that differentiated into stratified cone-rich retinal tissue in agitated cultures. Electron microscopy revealed differentiating outer segments of photoreceptor cells. Bulk RNA-sequencing profiling of time-course retinal organoids demonstrated that retinal differentiation in vitro recapitulated in vivo retinogenesis in temporal expression of cell differentiation markers and retinal disease genes, as well as in mRNA alternative splicing. Single-cell RNA-sequencing profiling of 8-mo retinal organoids identified cone and rod cell clusters and confirmed the cone enrichment initially revealed by quantitative microscopy. Notably, cones from retinal organoids and human macula had similar single-cell transcriptomes, and so did rods. Cones in retinal organoids exhibited electrophysiological functions. Collectively, we have established cone-rich retinal organoids and a reference of transcriptomes that are valuable resources for retinal studies.


Asunto(s)
Organoides , Células Fotorreceptoras Retinianas Conos , Transcriptoma/genética , Diferenciación Celular/fisiología , Línea Celular , Células Madre Embrionarias , Humanos , Organoides/química , Organoides/citología , Organoides/metabolismo , Organoides/fisiología , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/química , Retina/citología , Retina/metabolismo , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/química , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Análisis de la Célula Individual
6.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502266

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of vision loss. Elevated homocysteine (Hcy) (Hyperhomocysteinemia) (HHcy) has been reported in AMD. We previously reported that HHcy induces AMD-like features. This study suggests that N-Methyl-d-aspartate receptor (NMDAR) activation in the retinal pigment epithelium (RPE) is a mechanism for HHcy-induced AMD. Serum Hcy and cystathionine-ß-synthase (CBS) were assessed by ELISA. The involvement of NMDAR in Hcy-induced AMD features was evaluated (1) in vitro using ARPE-19 cells, primary RPE isolated from HHcy mice (CBS), and mouse choroidal endothelial cells (MCEC); (2) in vivo using wild-type mice and mice deficient in RPE NMDAR (NMDARR-/-) with/without Hcy injection. Isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1, and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage, and choroidal neovascularization (CNV). A neovascular AMD patient's serum showed a significant increase in Hcy and a decrease in CBS. Hcy significantly increased HIF-1α, VEGF, and NMDAR in RPE cells, and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retina and CNV. Knocking down RPE NMDAR improved retinal structure and CNV. Our findings underscore the role of RPE NMDAR in Hcy-induced AMD features; thus, NMDAR inhibition could serve as a promising therapeutic target for AMD.


Asunto(s)
Homocisteína/efectos adversos , Homocisteína/sangre , Degeneración Macular/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Línea Celular , Neovascularización Coroidal/etiología , Cistationina betasintasa/sangre , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Humanos , Hiperhomocisteinemia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Degeneración Macular/inducido químicamente , Degeneración Macular/diagnóstico por imagen , Degeneración Macular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neovascularización Patológica/etiología , Cultivo Primario de Células , Epitelio Pigmentado de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Hum Mol Genet ; 26(R1): R45-R50, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854576

RESUMEN

Age-related macular degeneration (AMD) is a progressive blinding disease and represents the leading cause of visual impairment in the aging population. AMD affects central vision which impairs one's ability to drive, read and recognize faces. There is no cure for this disease and current treatment modalities for the exudative form of the disease require repeated intravitreal injections which may be painful, are incompletely efficacious, and represent a significant treatment burden for both the patient and physician. As such, AMD represents a significant and important clinical problem.It is anticipated that in three years' time, 196 million individuals will be affected with AMD. Over 250 billion dollars per year are spent on care for AMD patients in the US. Over half of the heritability is explained by two major loci, thus AMD is considered the most well genetically defined of the complex disorders. A recent GWAS on 43,566 subjects identified novel loci and pathways associated with AMD risk, which has provided an excellent platform for additional functional studies. Genetic variants have been investigated, particularly with respect to anti-VEGF treatment, however to date, no pharmacogenomic associations have been consistently identified across these studies. It may be that if the goal of personalized medicine is to be realized and biomarkers are to have predictive value for determining the magnitude of risk for AMD at the genetic level, one will need to examine the relationships between these pathways across disease state and relative to modifiable risk factors such as hypertension, smoking, body mass index, and hypercholesterolemia. Further studies investigating protective alleles in populations with low AMD prevalence may lead to this goal.


Asunto(s)
Degeneración Macular/genética , Predisposición Genética a la Enfermedad/genética , Terapia Genética , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/metabolismo , Medicina de Precisión , Factores de Riesgo
8.
Genet Med ; 21(9): 2103-2115, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967659

RESUMEN

PURPOSE: To identify the molecular cause in five unrelated families with a distinct autosomal dominant ocular systemic disorder we called ROSAH syndrome due to clinical features of retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache. METHODS: Independent discovery exome and genome sequencing in families 1, 2, and 3, and confirmation in families 4 and 5. Expression of wild-type messenger RNA and protein in human and mouse tissues and cell lines. Ciliary assays in fibroblasts from affected and unaffected family members. RESULTS: We found the heterozygous missense variant in the ɑ-kinase gene, ALPK1, (c.710C>T, [p.Thr237Met]), segregated with disease in all five families. All patients shared the ROSAH phenotype with additional low-grade ocular inflammation, pancytopenia, recurrent infections, and mild renal impairment in some. ALPK1 was notably expressed in retina, retinal pigment epithelium, and optic nerve, with immunofluorescence indicating localization to the basal body of the connecting cilium of the photoreceptors, and presence in the sweat glands. Immunocytofluorescence revealed expression at the centrioles and spindle poles during metaphase, and at the base of the primary cilium. Affected family member fibroblasts demonstrated defective ciliogenesis. CONCLUSION: Heterozygosity for ALPK1, p.Thr237Met leads to ROSAH syndrome, an autosomal dominant ocular systemic disorder.


Asunto(s)
Nervio Óptico/patología , Proteínas Quinasas/genética , Retina/metabolismo , Distrofias Retinianas/genética , Exoma/genética , Femenino , Heterocigoto , Humanos , Hipohidrosis/genética , Hipohidrosis/patología , Masculino , Trastornos Migrañosos/genética , Trastornos Migrañosos/patología , Mutación Missense/genética , Nervio Óptico/metabolismo , Linaje , Fenotipo , Retina/patología , Distrofias Retinianas/patología , Esplenomegalia/genética , Esplenomegalia/patología
9.
BMC Med Genet ; 20(1): 63, 2019 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-31029096

RESUMEN

BACKGROUND: We performed clinical and genetic characterization of a family with cavitary optic disc anomaly (CODA), an autosomal dominant condition that causes vision loss due to adult-onset maculopathy in the majority of cases. CODA is characterized by a variably excavated optic nerve appearance such as morning glory, optic pit, atypical coloboma, and severe optic nerve cupping. METHODS: Four affected and fourteen unaffected family members of a multi-generation pedigree were phenotyped by visual acuity, intraocular pressure, dilated fundus examination, fundus photography, and optical coherence tomography. Genetic analysis was performed by breakpoint polymerase chain reaction (PCR), long range PCR, and direct Sanger sequencing. The functional relevance of the copy number alteration region was assessed by in silico analysis. RESULTS: We found progressive optic nerve cupping in three affected members of a family with CODA. In one individual, an optic pit developed over time from a normal optic nerve. By two independent methods, we detected a previously described intergenic triplication that segregated with disease in all adults of the family. The copy number alteration was also detected in five children with normal optic nerves. eQTL analysis demonstrated that this CNA region regulates expression of up to 4 genes in cis. CONCLUSIONS: Morning glory, optic pit and atypical coloboma are currently considered congenital anomalies of the optic nerve, but our data indicate that in CODA, the excavated optic nerve appearance may develop after birth and into adulthood. In silico analysis of the CNA, may explain why vairable expressivity is observed in CODA.


Asunto(s)
Variaciones en el Número de Copia de ADN , Anomalías del Ojo/genética , Disco Óptico/patología , Nervio Óptico/patología , Sitios de Carácter Cuantitativo , Adolescente , Niño , Preescolar , Progresión de la Enfermedad , Anomalías del Ojo/etiología , Femenino , Humanos , Masculino , Linaje
10.
Semin Thromb Hemost ; 44(3): 276-286, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29566407

RESUMEN

Intracranial hemorrhage (ICH) is a serious complication in patients receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO) and is associated with high mortality. It is unknown whether ICH may be a consequence of the ECMO or of an underlying disease. The authors first aimed to assess the incidence of ICH at initiation and during the course of VV-ECMO and its associated mortality. The second aim was to identify clinical and laboratory measures that could predict the development of ICH in severe respiratory failure. Data were collected from a total number of 165 patients receiving VV-ECMO from January, 2012 to December, 2016 in a single tertiary center and treated according to a single protocol. Only patients who had a brain computed tomography within 24 hours of initiation of ECMO (n = 149) were included for analysis. The prevalence and incidence of ICH at initiation and during the course of VV-ECMO (at median 9 days) were 10.7% (16/149) and 5.2% (7/133), respectively. Thrombocytopenia and reduced creatinine clearance (CrCL) were independently associated with increased risk of ICH on admission; odds ratio (95% confidence interval): 22.6 (2.6-99.5), and 10.8 (5.6-16.2). Only 30-day (not 180-day) mortality was significantly higher in patients with ICH on admission versus those without (37.5% [6/16] vs 16.4% [22/133]; p = 0.03 and 43.7% [7/16] vs 26.3% [35/133]; p = 0.15, respectively). Reduced CrCL and thrombocytopenia were associated with ICH at initiation of VV-ECMO. The higher incidence of ICH at initiation suggests it is more closely related to the severity of the underlying lung injury than to the VV-ECMO itself. ICH at VV-ECMO initiation was associated with early mortality.


Asunto(s)
Oxigenación por Membrana Extracorpórea/efectos adversos , Hemorragias Intracraneales/mortalidad , Insuficiencia Respiratoria/complicaciones , Humanos , Hemorragias Intracraneales/patología , Tasa de Supervivencia
11.
Ophthalmic Plast Reconstr Surg ; 32(1): e21-3, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25794021

RESUMEN

A 39-year-old man without a significant medical history developed headaches, OS swelling, and limited left-sided ocular motility. An ultrasound of the left orbit and head MRI revealed a retro-orbital mass. A partial left anterior orbitotomy with partial resection was performed, and histopathologic examination of the resected tumor portion was suggestive of a neuroendocrine carcinoma. A large, anterior mediastinal mass was found on chest imaging, and the patient was diagnosed with a primary thymic neuroendocrine tumor. To the authors' knowledge, this is the first report of an otherwise healthy patient presenting with the mass effects of a thymic neuroendocrine carcinoma metastasis to the orbital tissues before detection of the primary thymic malignancy.


Asunto(s)
Carcinoma Neuroendocrino/secundario , Neoplasias Orbitales/secundario , Neoplasias del Timo/patología , Adulto , Biomarcadores de Tumor/metabolismo , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/cirugía , Quimioradioterapia , Humanos , Imagen por Resonancia Magnética , Masculino , Proteínas de Neoplasias/metabolismo , Órbita/cirugía , Neoplasias Orbitales/metabolismo , Neoplasias Orbitales/cirugía , Tomografía de Emisión de Positrones
13.
Cancer Cell ; 9(5): 405-16, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16697960

RESUMEN

Our understanding of Ewing's sarcoma development mediated by the EWS/FLI fusion protein has been limited by a lack of knowledge regarding the tumor cell of origin. To circumvent this, we analyzed the function of EWS/FLI in Ewing's sarcoma itself. By combining retroviral-mediated RNA interference with reexpression studies, we show that ongoing EWS/FLI expression is required for the tumorigenic phenotype of Ewing's sarcoma. We used this system to define the full complement of EWS/FLI-regulated genes in Ewing's sarcoma. Functional analysis revealed that NKX2.2 is an EWS/FLI-regulated gene that is necessary for oncogenic transformation in this tumor. Thus, we developed a highly validated transcriptional profile for the EWS/FLI fusion protein and identified a critical target gene in Ewing's sarcoma development.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Genes Relacionados con las Neoplasias/genética , Proteínas de Homeodominio/genética , Proteínas de Fusión Oncogénica/genética , Sarcoma de Ewing/genética , Factores de Transcripción/genética , Animales , Transformación Celular Neoplásica , Proteína Homeobox Nkx-2.2 , Humanos , Ratones , Ratones Desnudos , Análisis por Micromatrices , Proteínas Nucleares , Proteína Proto-Oncogénica c-fli-1 , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína EWS de Unión a ARN , Retroviridae/genética , Transcripción Genética , Proteínas de Pez Cebra
14.
Commun Biol ; 7(1): 107, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233474

RESUMEN

We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 1 locus at genome-wide significance level (p < 5×10-8) and 9 with significance of p < 5×10-6 for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p = 4.96×10-9); Hispanic and European Ancestry infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we identify a novel locus at GLI3 with relevance to retinal biology, supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.


Asunto(s)
Estudio de Asociación del Genoma Completo , Retinopatía de la Prematuridad , Recién Nacido , Humanos , Etnicidad , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
15.
Curr Diab Rep ; 13(4): 476-80, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23649946

RESUMEN

Diabetic macular edema (DME) is a significant cause of vision loss and represents an important clinical and public health problem. It is characterized by breakdown of the blood retinal barrier with fluid accumulation in the sub-retinal and intra-retinal spaces. Although several hypotheses exist for the causes of diabetic macular edema, specific molecular mechanisms remain unclear. Current thinking includes the role of vascular endothelial growth factor (VEGF) and inflammatory cytokines in vascular permeability. We review studies showing a relationship between elevated aqueous VEGF, monocyte chemoattractant protein -1, interleukin 6, or interleukin 8 in association with DME and as predictors of DME. The presence of mediators in both the angiogenesis and inflammatory pathways data suggest a multifactorial model for the development of DME. Further studies targeting individual cytokine activity will be important to our understanding of the pathogenesis and treatment.


Asunto(s)
Citocinas/metabolismo , Retinopatía Diabética/diagnóstico , Edema Macular/diagnóstico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Retinopatía Diabética/complicaciones , Humanos , Edema Macular/complicaciones , Solubilidad
16.
Genome Biol ; 24(1): 269, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012720

RESUMEN

BACKGROUND: Systematic characterization of how  genetic variation modulates gene regulation in a cell type-specific context is essential for understanding complex traits. To address this question, we profile gene expression and chromatin accessibility in cells from healthy retinae of 20 human donors through single-cell multiomics and genomic sequencing. RESULTS: We map eQTL, caQTL, allelic-specific expression, and allelic-specific chromatin accessibility in major retinal cell types. By integrating these results, we identify and characterize regulatory elements and genetic variants effective on gene regulation in individual cell types. The majority of identified sc-eQTLs and sc-caQTLs display cell type-specific effects, while the cis-elements containing genetic variants with cell type-specific effects are often accessible in multiple cell types. Furthermore, the transcription factors whose binding sites are perturbed by genetic variants tend to have higher expression levels in the cell types where the variants exert their effects, compared to the cell types where the variants have no impact. We further validate our findings with high-throughput reporter assays. Lastly, we identify the enriched cell types, candidate causal variants and genes, and cell type-specific regulatory mechanism underlying GWAS loci. CONCLUSIONS: Overall, genetic effects on gene regulation are highly context dependent. Our results suggest that cell type-dependent genetic effect is driven by precise modulation of both trans-factor expression and chromatin accessibility of cis-elements. Our findings indicate hierarchical collaboration among transcription factors plays a crucial role in mediating cell type-specific effects of genetic variants on gene regulation.


Asunto(s)
Multiómica , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Sitios de Carácter Cuantitativo , Regulación de la Expresión Génica , Cromatina , Estudio de Asociación del Genoma Completo
17.
Cell Genom ; 3(6): 100298, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37388908

RESUMEN

Cell classes in the human retina are highly heterogeneous with their abundance varying by several orders of magnitude. Here, we generated and integrated a multi-omics single-cell atlas of the adult human retina, including more than 250,000 nuclei for single-nuclei RNA-seq and 137,000 nuclei for single-nuclei ATAC-seq. Cross-species comparison of the retina atlas among human, monkey, mice, and chicken revealed relatively conserved and non-conserved types. Interestingly, the overall cell heterogeneity in primate retina decreases compared with that of rodent and chicken retina. Through integrative analysis, we identified 35,000 distal cis-element-gene pairs, constructed transcription factor (TF)-target regulons for more than 200 TFs, and partitioned the TFs into distinct co-active modules. We also revealed the heterogeneity of the cis-element-gene relationships in different cell types, even from the same class. Taken together, we present a comprehensive single-cell multi-omics atlas of the human retina as a resource that enables systematic molecular characterization at individual cell-type resolution.

18.
bioRxiv ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37873318

RESUMEN

Bulk deconvolution with single-cell/nucleus RNA-seq data is critical for understanding heterogeneity in complex biological samples, yet the technological discrepancy across sequencing platforms limits deconvolution accuracy. To address this, we introduce an experimental design to match inter-platform biological signals, hence revealing the technological discrepancy, and then develop a deconvolution framework called DeMixSC using the better-matched, i.e., benchmark, data. Built upon a novel weighted nonnegative least-squares framework, DeMixSC identifies and adjusts genes with high technological discrepancy and aligns the benchmark data with large patient cohorts of matched-tissue-type for large-scale deconvolution. Our results using a benchmark dataset of healthy retinas suggest much-improved deconvolution accuracy. Further analysis of a cohort of 453 patients with age-related macular degeneration supports the broad applicability of DeMixSC. Our findings reveal the impact of technological discrepancy on deconvolution performance and underscore the importance of a well-matched dataset to resolve this challenge. The developed DeMixSC framework is generally applicable for deconvolving large cohorts of disease tissues, and potentially cancer.

19.
Res Sq ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37292936

RESUMEN

We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 2 loci at genome-wide significance level (p<5×10-8) and 7 at suggestive significance (p<5×10-6) for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p=4.96×10-9); Hispanic and Caucasian infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we report the largest ROP GWAS to date, identifying a novel locus at GLI3 with relevance to retinal biology supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.

20.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067097

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of blindness, and elucidating its underlying disease mechanisms is vital to the development of appropriate therapeutics. We identified differentially expressed genes (DEGs) and differentially spliced genes (DSGs) across the clinical stages of AMD in disease-affected tissue, the macular retina pigment epithelium (RPE)/choroid and the macular neural retina within the same eye. We utilized 27 deeply phenotyped donor eyes (recovered within a 6 h postmortem interval time) from Caucasian donors (60-94 years) using a standardized published protocol. Significant findings were then validated in an independent set of well-characterized donor eyes (n = 85). There was limited overlap between DEGs and DSGs, suggesting distinct mechanisms at play in AMD pathophysiology. A greater number of previously reported AMD loci overlapped with DSGs compared to DEGs between disease states, and no DEG overlap with previously reported loci was found in the macular retina between disease states. Additionally, we explored allele-specific expression (ASE) in coding regions of previously reported AMD risk loci, uncovering a significant imbalance in C3 rs2230199 and CFH rs1061170 in the macular RPE/choroid for normal eyes and intermediate AMD (iAMD), and for CFH rs1061147 in the macular RPE/choroid for normal eyes and iAMD, and separately neovascular AMD (NEO). Only significant DEGs/DSGs from the macular RPE/choroid were found to overlap between disease states. STAT1, validated between the iAMD vs. normal comparison, and AGTPBP1, BBS5, CERKL, FGFBP2, KIFC3, RORα, and ZNF292, validated between the NEO vs. normal comparison, revealed an intricate regulatory network with transcription factors and miRNAs identifying potential upstream and downstream regulators. Findings regarding the complement genes C3 and CFH suggest that coding variants at these loci may influence AMD development via an imbalance of gene expression in a tissue-specific manner. Our study provides crucial insights into the multifaceted genomic underpinnings of AMD (i.e., tissue-specific gene expression changes, potential splice variation, and allelic imbalance), which may open new avenues for AMD diagnostics and therapies specific to iAMD and NEO.


Asunto(s)
D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Degeneración Macular Húmeda , Humanos , Alelos , Inhibidores de la Angiogénesis , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual , Expresión Génica , Proteínas del Citoesqueleto , Proteínas de Unión a Fosfato , Proteínas Portadoras , Proteínas del Tejido Nervioso , Proteínas de Unión al GTP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA