Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(10): e3002336, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856539

RESUMEN

The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity.


Asunto(s)
Opacidad de la Córnea , Epitelio Corneal , Limbo de la Córnea , Humanos , Limbo de la Córnea/metabolismo , Córnea/metabolismo , Epitelio Corneal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Opacidad de la Córnea/metabolismo
2.
BMC Genomics ; 25(1): 484, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755526

RESUMEN

Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.


Asunto(s)
Glaucoma , Humanos , Glaucoma/genética , Glaucoma/diagnóstico , Masculino , Femenino , Niño , Preescolar , Citocromo P-450 CYP1B1/genética , Mutación , Lactante , Genómica/métodos , Linaje , Adolescente , Factores de Transcripción Forkhead
3.
J Pathol ; 259(4): 441-454, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36656098

RESUMEN

The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however, the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/- ) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic [reduced representation bisulphite sequencing (RRBS)] analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting the dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo, and transforming growth factor ß (TGFß) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified six key modules involving cell cycle control and disturbance of TGFß, bone morphogenetic protein (BMP), Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function and confirming the epigenetic control of gene regulation in early retinal development, which points to a novel mechanism underlying CRB1-retinopathies. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Polaridad Celular , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Polaridad Celular/genética , Retina/metabolismo , Ciclo Celular , Epigénesis Genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Genet Med ; 24(5): 1073-1084, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35034853

RESUMEN

PURPOSE: Ocular coloboma arises from genetic or environmental perturbations that inhibit optic fissure (OF) fusion during early eye development. Despite high genetic heterogeneity, 70% to 85% of patients remain molecularly undiagnosed. In this study, we have identified new potential causative genes using cross-species comparative meta-analysis. METHODS: Evolutionarily conserved differentially expressed genes were identified through in silico analysis, with in situ hybridization, gene knockdown, and rescue performed to confirm spatiotemporal gene expression and phenotype. Interrogation of the 100,000 Genomes Project for putative pathogenic variants was performed. RESULTS: Nine conserved differentially expressed genes between zebrafish and mouse were identified. Expression of zebrafish ank3a, bmpr1ba/b, cdh4, and pdgfaa was localized to the OF, periocular mesenchyme cells, or ciliary marginal zone, regions traversed by the OF. Knockdown of ank3, bmpr1b, and pdgfaa revealed a coloboma and/or microphthalmia phenotype. Novel pathogenic variants in ANK3, BMPR1B, PDGFRA, and CDH4 were identified in 8 unrelated coloboma families. We showed BMPR1B rescued the knockdown phenotype but variant messenger RNAs failed, providing evidence of pathogenicity. CONCLUSION: We show the utility of cross-species meta-analysis to identify several novel coloboma disease-causing genes. There is a potential to increase the diagnostic yield for new and unsolved patients while adding to our understanding of the genetic basis of OF morphogenesis.


Asunto(s)
Coloboma , Microftalmía , Animales , Ancirinas/genética , Ancirinas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Coloboma/genética , Pruebas Genéticas , Humanos , Ratones , Microftalmía/genética , Fenotipo , Pez Cebra/genética
5.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671840

RESUMEN

EPHA2 is a transmembrane tyrosine kinase receptor that, when disrupted, causes congenital and age-related cataracts. Cat-Map reports 22 pathogenic EPHA2 variants associated with congenital cataracts, variable microcornea, and lenticonus, but no previous association with microphthalmia (small, underdeveloped eye, ≥2 standard deviations below normal axial length). Microphthalmia arises from ocular maldevelopment with >90 monogenic causes, and can include a complex ocular phenotype. In this paper, we report two pathogenic EPHA2 variants in unrelated families presenting with bilateral microphthalmia and congenital cataracts. Whole genome sequencing through the 100,000 Genomes Project and cataract-related targeted gene panel testing identified autosomal dominant heterozygous mutations segregating with the disease: (i) missense c.1751C>T, p.(Pro584Leu) and (ii) splice site c.2826-9G>A. To functionally validate pathogenicity, morpholino knockdown of epha2a/epha2b in zebrafish resulted in significantly reduced eye size ± cataract formation. Misexpression of N-cadherin and retained fibre cell nuclei were observed in the developing lens of the epha2b knockdown morphant fish by 3 days post-fertilisation, which indicated a putative mechanism for microphthalmia pathogenesis through disruption of cadherin-mediated adherens junctions, preventing lens maturation and the critical signals stimulating eye growth. This study demonstrates a novel association of EPHA2 with microphthalmia, suggesting further analysis of pathogenic variants in unsolved microphthalmia cohorts may increase molecular diagnostic rates.


Asunto(s)
Catarata/genética , Efrina-A2/genética , Microftalmía/genética , Adolescente , Adulto , Empalme Alternativo , Animales , Catarata/etiología , Niño , Embrión no Mamífero , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Microftalmía/etiología , Persona de Mediana Edad , Morfolinos/genética , Mutación Missense , Oligonucleótidos Antisentido/genética , Linaje , Receptor EphA2 , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Nucleic Acids Res ; 40(6): 2639-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22110043

RESUMEN

Spliceosomes remove introns from primary gene transcripts. They assemble de novo on each intron through a series of steps that involve the incorporation of five snRNP particles and multiple non-snRNP proteins. In mammals, all the intermediate complexes have been characterized on one transcript (MINX), with the exception of the very first, complex E. We have purified this complex by two independent procedures using antibodies to either U1-A or PRPF40A proteins, which are known to associate at an early stage of assembly. We demonstrate that the purified complexes are functional in splicing using commitment assays. These complexes contain components expected to be in the E complex and a number of previously unrecognized factors, including survival of motor neurons (SMN) and proteins of the SMN-associated complex. Depletion of the SMN complex proteins from nuclear extracts inhibits formation of the E complex and causes non-productive complexes to accumulate. This suggests that the SMN complex stabilizes the association of U1 and U2 snRNPs with pre-mRNA. In addition, the antibody to PRPF40A precipitated U2 snRNPs from nuclear extracts, indicating that PRPF40A associates with U2 snRNPs.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteínas del Complejo SMN/metabolismo , Empalmosomas/metabolismo , Proteínas Portadoras/metabolismo , Células HeLa , Humanos , Empalme del ARN
7.
Stem Cell Reports ; 19(6): 839-858, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821055

RESUMEN

Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.


Asunto(s)
Apoptosis , Células Madre Pluripotentes Inducidas , Microftalmía , Microftalmía/genética , Microftalmía/patología , Microftalmía/metabolismo , Humanos , Apoptosis/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proliferación Celular , Caspasa 8/metabolismo , Caspasa 8/genética , Matriz Extracelular/metabolismo , Ojo/metabolismo , Ojo/patología , Fenotipo
8.
Am J Biol Anthropol ; 183(2): e24866, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37929663

RESUMEN

OBJECTIVES: Analyses of external bone shape using geometric morphometrics (GM) and cross-sectional geometry (CSG) are frequently employed to investigate bone structural variation and reconstruct activity in the past. However, the association between these methods has not been thoroughly investigated. Here, we analyze whole bone shape and CSG variation of metacarpals 1-5 and test covariation between them. MATERIALS AND METHODS: We analyzed external metacarpal shape using GM and CSG of the diaphysis at three locations in metacarpals 1-5. The study sample includes three modern human groups: crew from the shipwrecked Mary Rose (n = 35 metacarpals), a Pre-industrial group (n = 50), and a Post-industrial group (n = 31). We tested group differences in metacarpal shape and CSG, as well as correlations between these two aspects of metacarpal bone structure. RESULTS: GM analysis demonstrated metacarpus external shape variation is predominately related to changes in diaphyseal width and articular surface size. Differences in external shape were found between the non-pollical metacarpals of the Mary Rose and Pre-industrial groups and between the third metacarpals of the Pre- and Post-industrial groups. CSG results suggest the Mary Rose and Post-industrial groups have stronger metacarpals than the Pre-industrial group. Correlating CSG and external shape showed significant relationships between increasing external robusticity and biomechanical strength across non-pollical metacarpals (r: 0.815-0.535; p ≤ 0.05). DISCUSSION: Differences in metacarpal cortical structure and external shape between human groups suggest differences in the type and frequency of manual activities. Combining these results with studies of entheses and kinematics of the hand will improve reconstructions of manual behavior in the past.


Asunto(s)
Huesos del Metacarpo , Humanos , Metacarpo , Mano , Diáfisis , Extremidad Superior
9.
BMC Cell Biol ; 14: 52, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24279897

RESUMEN

BACKGROUND: BORIS (CTCFL), a paralogue of the multifunctional and ubiquitously expressed transcription factor CTCF, is best known for its role in transcriptional regulation. In the nucleus, BORIS is particularly enriched in the nucleolus, a crucial compartment for ribosomal RNA and RNA metabolism. However, little is known about cytoplasmic BORIS, which represents the major pool of BORIS protein. RESULTS: We show, firstly, that BORIS has a putative nuclear export signal in the C-terminal domain. Furthermore, BORIS associates with mRNA in both neural stem cells and young neurons. The majority of the BORIS-associated transcripts are different in the two cell types. Finally, by using polysome profiling we show that BORIS is associated with actively translating ribosomes. CONCLUSION: We have demonstrated the RNA binding properties of cellular BORIS and its association with actively translating ribosomes. We suggest that BORIS is involved in gene expression at both the transcriptional and post-transcriptional levels.


Asunto(s)
Nucléolo Celular/genética , Citoplasma/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Polirribosomas/genética , ARN Mensajero/genética , ARN Ribosómico/genética , Secuencia de Aminoácidos , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Datos de Secuencia Molecular , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Polirribosomas/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Transducción de Señal , Transcripción Genética
10.
Nucleic Acids Res ; 39(16): 7194-208, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21602265

RESUMEN

Controlling the patterns of splicing of specific genes is an important goal in the development of new therapies. We have shown that the splicing of a refractory exon, SMN2 exon 7, could be increased in fibroblasts derived from patients with spinal muscular atrophy by using bifunctional targeted oligonucleotide enhancers of splicing (TOES) oligonucleotides that anneal to the exon and contain a 'tail' of enhancer sequences that recruit activating proteins. We show here that there are striking agreements between the effects of oligonucleotides on splicing in vitro and on both splicing and SMN2 protein expression in patient-derived fibroblasts, indicating that the effects on splicing are the major determinant of success. Increased exon inclusion depends on the number, sequence and chemistry of the motifs that bind the activator protein SRSF1, but it is not improved by increasing the strength of annealing to the target site. The optimal oligonucleotide increases protein levels in transfected fibroblasts by a mean value of 2.6-fold (maximum 4.6-fold), and after two rounds of transfection the effect lasted for a month. Oligonucleotides targeted to the upstream exon (exon 6 in SMN) are also effective. We conclude that TOES oligonucleotides are highly effective reagents for restoring the splicing of refractory exons and can act across long introns.


Asunto(s)
Oligonucleótidos/química , Empalme del ARN , Secuencia de Bases , Sitios de Unión , Línea Celular , Exones , Humanos , Cinética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina , Proteína 2 para la Supervivencia de la Neurona Motora/genética
11.
Biomolecules ; 13(2)2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36830662

RESUMEN

Ocular coloboma (OC) is a failure of complete optic fissure closure during embryonic development and presents as a tissue defect along the proximal-distal axis of the ventral eye. It is classed as part of the clinical spectrum of structural eye malformations with microphthalmia and anophthalmia, collectively abbreviated to MAC. Despite deliberate attempts to identify causative variants in MAC, many patients remain without a genetic diagnosis. To reveal potential candidate genes, we utilised transcriptomes experimentally generated from embryonic eye tissues derived from humans, mice, zebrafish, and chicken at stages coincident with optic fissure closure. Our in-silico analyses found 10 genes with optic fissure-specific enriched expression: ALDH1A3, BMPR1B, EMX2, EPHB3, NID1, NTN1, PAX2, SMOC1, TENM3, and VAX1. In situ hybridization revealed that all 10 genes were broadly expressed ventrally in the developing eye but that only PAX2 and NTN1 were expressed in cells at the edges of the optic fissure margin. Of these conserved optic fissure genes, EMX2, NID1, and EPHB3 have not previously been associated with human MAC cases. Targeted genetic manipulation in zebrafish embryos using CRISPR/Cas9 caused the developmental MAC phenotype for emx2 and ephb3. We analysed available whole genome sequencing datasets from MAC patients and identified a range of variants with plausible causality. In combination, our data suggest that expression of genes involved in ventral eye development is conserved across a range of vertebrate species and that EMX2, NID1, and EPHB3 are candidate loci that warrant further functional analysis in the context of MAC and should be considered for sequencing in cohorts of patients with structural eye malformations.


Asunto(s)
Coloboma , Anomalías del Ojo , Neuropéptidos , Femenino , Embarazo , Humanos , Animales , Ratones , Coloboma/genética , Coloboma/metabolismo , Ojo/metabolismo , Pez Cebra/genética , Perfilación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Neuropéptidos/metabolismo , Proteínas de Homeodominio/metabolismo
12.
Genes (Basel) ; 12(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499292

RESUMEN

Inherited optic neuropathies, including Leber Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), are monogenetic diseases with a final common pathway of mitochondrial dysfunction leading to retinal ganglion cell (RGC) death and ultimately loss of vision. They are, therefore, excellent models with which to investigate this ubiquitous disease process-implicated in both common polygenetic ocular diseases (e.g., Glaucoma) and late-onset central nervous system neurodegenerative diseases (e.g., Parkinson disease). In recent years, cellular and animal models of LHON and DOA have matured in parallel with techniques (such as RNA-seq) to determine and analyze the transcriptomes of affected cells. This confluence leaves us at a particularly exciting time with the potential for the identification of novel pathogenic players and therapeutic targets. Here, we present a discussion of the importance of inherited optic neuropathies and how transcriptomic techniques can be exploited in the development of novel mutation-independent, neuroprotective therapies.


Asunto(s)
Predisposición Genética a la Enfermedad , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/terapia , Transcriptoma , Alelos , Animales , Manejo de la Enfermedad , Perfilación de la Expresión Génica/métodos , Estudios de Asociación Genética , Terapia Genética , Genotipo , Humanos , Mutación , Atrofias Ópticas Hereditarias/diagnóstico , Fenotipo
13.
Genes (Basel) ; 12(2)2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562844

RESUMEN

Dual-specificity tyrosine phosphorylation-regulated kinase 1A or DYRK1A, contributes to central nervous system development in a dose-sensitive manner. Triallelic DYRK1A is implicated in the neuropathology of Down syndrome, whereas haploinsufficiency causes the rare DYRK1A-related intellectual disability syndrome (also known as mental retardation 7). It is characterised by intellectual disability, autism spectrum disorder and microcephaly with a typical facial gestalt. Preclinical studies elucidate a role for DYRK1A in eye development and case studies have reported associated ocular pathology. In this study families of the DYRK1A Syndrome International Association were asked to self-report any co-existing ocular abnormalities. Twenty-six patients responded but only 14 had molecular confirmation of a DYRK1A pathogenic variant. A further nineteen patients from the UK Genomics England 100,000 Genomes Project were identified and combined with 112 patients reported in the literature for further analysis. Ninety out of 145 patients (62.1%) with heterozygous DYRK1A variants revealed ocular features, these ranged from optic nerve hypoplasia (13%, 12/90), refractive error (35.6%, 32/90) and strabismus (21.1%, 19/90). Patients with DYRK1A variants should be referred to ophthalmology as part of their management care pathway to prevent amblyopia in children and reduce visual comorbidity, which may further impact on learning, behaviour, and quality of life.


Asunto(s)
Sistema Nervioso Central/anomalías , Sistema Nervioso Central/patología , Discapacidad Intelectual/genética , Enfermedades del Nervio Óptico/genética , Nervio Óptico/anomalías , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Niño , Preescolar , Síndrome de Down/genética , Síndrome de Down/patología , Ojo/patología , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Femenino , Haploinsuficiencia/genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Persona de Mediana Edad , Nervio Óptico/patología , Enfermedades del Nervio Óptico/patología , Errores de Refracción/genética , Errores de Refracción/patología , Estrabismo/genética , Estrabismo/patología , Quinasas DyrK
14.
Eur J Hum Genet ; 29(2): 349-355, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33024313

RESUMEN

PAX6 is considered the master regulator of eye development, the majority of variants affecting this gene cause the pan-ocular developmental eye disorder aniridia. Although no genotype-phenotype correlations are clearly established, missense variants affecting the DNA-binding paired domain of PAX6 are usually associated with non-aniridia phenotypes like microphthalmia, coloboma or isolated foveal hypoplasia. In this study, we report two missense heterozygous variants in the paired domain of PAX6 resulting in isolated foveal hypoplasia with nystagmus in two independent families: c.112 C > G; p.(Arg38Gly) and c.214 G > C; p.(Gly72Arg) in exons 5 and 6, respectively. Furthermore, we provide evidence that paternal postzygotic mosaicism is the cause of inheritance, with clinically unaffected fathers and reduced affected allele fraction. This work contributes to increase the phenotypic spectrum caused by PAX6 variants, and to our knowledge, is the first report to describe the presence of postzygotic parental mosaicism causing isolated foveal hypoplasia with nystagmus. These results support the growing evidence that suggest an overestimation of sporadic cases with PAX6 variants, which has strong implications for both genetic counselling and family planning.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Fóvea Central/anomalías , Mosaicismo , Mutación Missense , Nistagmo Congénito/genética , Nistagmo Patológico/genética , Factor de Transcripción PAX6/genética , Adolescente , Adulto , Aniridia/genética , Coloboma , Proteínas del Ojo/genética , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Genotipo , Humanos , Masculino , Microftalmía/genética , Persona de Mediana Edad , Mutación , Padres , Linaje , Fenotipo , Adulto Joven
15.
Commun Biol ; 4(1): 802, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183774

RESUMEN

Regeneration of the testis from pluripotent stem cells is a real challenge, reflecting the complexity of the interaction of germ cells and somatic cells. Here we report the generation of testicular somatic cell-like cells (TesLCs) including Sertoli cell-like cells (SCLCs) from mouse embryonic stem cells (ESCs) in xeno-free culture. We find that Nr5a1/SF1 is critical for interaction between SCLCs and PGCLCs. Intriguingly, co-culture of TesLCs with epiblast-like cells (EpiLCs), rather than PGCLCs, results in self-organised aggregates, or testicular organoids. In the organoid, EpiLCs differentiate into PGCLCs or gonocyte-like cells that are enclosed within a seminiferous tubule-like structure composed of SCLCs. Furthermore, conditioned medium prepared from TesLCs has a robust inducible activity to differentiate EpiLCs into PGCLCs. Our results demonstrate conditions for in vitro reconstitution of a testicular environment from ESCs and provide further insights into the generation of sperm entirely in xeno-free culture.


Asunto(s)
Células Madre Embrionarias/citología , Estratos Germinativos/citología , Espermatozoides/citología , Testículo/citología , Animales , Diferenciación Celular , Técnicas de Cocultivo , Masculino , Ratones , Organoides/citología , Transcriptoma
16.
J Hazard Mater ; 412: 125192, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33517053

RESUMEN

We explore the role of various solution environments - chloride brines, acid mine drainage (sulfate) and groundwater (carbonate), as well as pore pressure in producing secular disequilibrium among the various radionuclides (RN) in the U-decay series upon leaching of uraninite - the most abundant U-ore and a widespread accessory mineral in U-rich rocks. We observed that the end products of the U-decay chain, 206Pb and 207Pb, exist primarily at the surface/edges of grains or within large pores in the uraninite. In contrast, the intermediate daughters 226Ra, 210Pb, 210Po, and 234/230Th, exist primarily within the bulk of uraninite, requiring breakdown by leaching for subsequent mobility to occur. Overall, pore pressure had little effect on RN mobility, with solution environment being the primary factor in creating significant mobility and disequilibrium among the RN, as it drives the initial breakdown of uraninite and influences the subsequent differential solubility of individual RNs. This was particularly the case for carbonate-bearing fluids, leading to significant fractionation of the various daughter RN arising from variable complexation and sorption phenomena. Understanding the geochemical behaviour of the RN in the U-decay series is important for predicting and managing the risks associated with RN in both environmental (acid-mine drainage) and engineered (metallurgical extraction) processes. Effective modelling of long-term RN behaviour should incorporate this strong relative fractionation caused by contrasting geochemical behaviour of individual RN during and after their release into the water from uraninite and subsequent interaction with the surrounding aquifer host rocks.

17.
JCI Insight ; 6(9)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33755601

RESUMEN

Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations in CHM, encoding for Rab escort protein 1 (REP1). Loss of functional REP1 leads to the accumulation of unprenylated Rab proteins and defective intracellular protein trafficking, the putative cause for photoreceptor, retinal pigment epithelium (RPE), and choroidal degeneration. CHM is ubiquitously expressed, but adequate prenylation is considered to be achieved, outside the retina, through the isoform REP2. Recently, the possibility of systemic features in CHM has been debated; therefore, in this study, whole metabolomic analysis of plasma samples from 25 CHM patients versus age- and sex-matched controls was performed. Results showed plasma alterations in oxidative stress-related metabolites, coupled with alterations in tryptophan metabolism, leading to significantly raised serotonin levels. Lipid metabolism was disrupted with decreased branched fatty acids and acylcarnitines, suggestive of dysfunctional lipid oxidation, as well as imbalances of several sphingolipids and glycerophospholipids. Targeted lipidomics of the chmru848 zebrafish provided further evidence for dysfunction, with the use of fenofibrate over simvastatin circumventing the prenylation pathway to improve the lipid profile and increase survival. This study provides strong evidence for systemic manifestations of CHM and proposes potentially novel pathomechanisms and targets for therapeutic consideration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Coroideremia/metabolismo , Metabolismo de los Lípidos/genética , Estrés Oxidativo/genética , Proteínas de Pez Cebra/genética , Adulto , Animales , Estudios de Casos y Controles , Coroideremia/genética , Fenofibrato/farmacología , Glicerofosfolípidos/metabolismo , Humanos , Hipolipemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica , Masculino , Metabolómica , Persona de Mediana Edad , Prenilación , Serotonina/metabolismo , Simvastatina/farmacología , Esfingolípidos/metabolismo , Triptófano/metabolismo , Adulto Joven , Pez Cebra
18.
J Hazard Mater ; 410: 124553, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33223312

RESUMEN

Knowledge of the behavior of technologically enhanced naturally occurring radioactive materials derived through the decay of U and its daughter products, and their subsequent fractionation, mobilization and retention, is essential to develop effective mitigation strategies and long-term radiological risk prediction. In the present study, multiple state-of-the-art, spatially resolved micro-analytical characterization techniques were combined to systematically track the liberation and migration of radionuclides (RN) from U-bearing phases in an Olympic Dam Cu flotation concentrate following sulfuric-acid-leach processing. The results highlighted the progressive dissolution of U-bearing minerals (mainly uraninite) leading to the release, disequilibrium and ultimately upgrade of daughter RN from the parent U. This occurred in conjunction with primary Cu-Fe-sulfide minerals undergoing coupled-dissolution reprecipitation to the porous secondary Cu-mineral, covellite. The budget of RN remaining in the leached concentrate was split between RN still hosted in the original U-bearing minerals, and RN that were mobilized and subsequently sorbed/precipitated onto porous covellite and auxiliary gangue mineral phases (e.g. barite). Further grinding of the flotation concentrate prior to sulfuric-acid-leach led to dissolution of U-bearing minerals previously encapsulated within Cu-Fe-sulfide minerals, resulting in increased release and disequilibrium of daughter RN, and causing further RN upgrade. The various processes that affect RN (mobility, sorption, precipitation) and sulfide minerals (coupled-dissolution reprecipitation and associated porosity generation) occur continuously within the hydrometallurgical circuit, and their interplay controls the rapid and highly localized enrichment of RN. The innovative combination of tools developed here reveal the heterogeneous distribution and fractionation of the RN in the ores following hydrometallurgical treatment at nm to cm-scales in exquisite detail. This approach provides an effective blueprint for understanding of the mobility and retention of U and its daughter products in complex anthropogenic and natural processes in the mining and energy industries.

19.
Ther Adv Ophthalmol ; 11: 2515841419835460, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30911735

RESUMEN

High-throughput, massively parallel sequence analysis has revolutionized the way that researchers design and execute scientific investigations. Vast amounts of sequence data can be generated in short periods of time. Regarding ophthalmology and vision research, extensive interrogation of patient samples for underlying causative DNA mutations has resulted in the discovery of many new genes relevant to eye disease. However, such analysis remains functionally limited. RNA-sequencing accurately snapshots thousands of genes, capturing many subtypes of RNA molecules, and has become the gold standard for transcriptome gene expression quantification. RNA-sequencing has the potential to advance our understanding of eye development and disease; it can reveal new candidates to improve our molecular diagnosis rates and highlight therapeutic targets for intervention. But with a wide range of applications, the design of such experiments can be problematic, no single optimal pipeline exists, and therefore, several considerations must be undertaken for optimal study design. We review the key steps involved in RNA-sequencing experimental design and the downstream bioinformatic pipelines used for differential gene expression. We provide guidance on the application of RNA-sequencing to ophthalmology and sources of open-access eye-related data sets.

20.
Sci Rep ; 7(1): 5644, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28717200

RESUMEN

Fibrosis-related events play a part in most blinding diseases worldwide. However, little is known about the mechanisms driving this complex multifactorial disease. Here we have carried out the first genome-wide RNA-Sequencing study in human conjunctival fibrosis. We isolated 10 primary fibrotic and 7 non-fibrotic conjunctival fibroblast cell lines from patients with and without previous glaucoma surgery, respectively. The patients were matched for ethnicity and age. We identified 246 genes that were differentially expressed by over two-fold and p < 0.05, of which 46 genes were upregulated and 200 genes were downregulated in the fibrotic cell lines compared to the non-fibrotic cell lines. We also carried out detailed gene ontology, KEGG, disease association, pathway commons, WikiPathways and protein network analyses, and identified distinct pathways linked to smooth muscle contraction, inflammatory cytokines, immune mediators, extracellular matrix proteins and oncogene expression. We further validated 11 genes that were highly upregulated or downregulated using real-time quantitative PCR and found a strong correlation between the RNA-Seq and qPCR results. Our study demonstrates that there is a distinct fibrosis gene signature in the conjunctiva after glaucoma surgery and provides new insights into the mechanistic pathways driving the complex fibrotic process in the eye and other tissues.


Asunto(s)
Enfermedades de la Conjuntiva/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Glaucoma/cirugía , Análisis de Secuencia de ARN/métodos , Adulto , Anciano , Línea Celular , Enfermedades de la Conjuntiva/etiología , Femenino , Fibroblastos/citología , Fibrosis , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Ontología de Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA