Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639096

RESUMEN

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Asunto(s)
Aterosclerosis , Redes Reguladoras de Genes , Análisis de la Célula Individual , Humanos , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Placa Aterosclerótica , Progresión de la Enfermedad , Femenino , Macrófagos/metabolismo , Macrófagos/patología , Ratones Noqueados , Receptores de LDL/genética , Receptores de LDL/metabolismo , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología
2.
Circulation ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881440

RESUMEN

BACKGROUND: Thromboembolic events, including myocardial infarction (MI) or stroke, caused by the rupture or erosion of unstable atherosclerotic plaques are the leading cause of death worldwide. Although most mouse models of atherosclerosis develop lesions in the aorta and carotid arteries, they do not develop advanced coronary artery lesions. Moreover, they do not undergo spontaneous plaque rupture with MI and stroke or do so at such a low frequency that they are not viable experimental models to study late-stage thrombotic events or to identify novel therapeutic approaches for treating atherosclerotic disease. This has stymied the development of more effective therapeutic approaches for reducing these events beyond what has been achieved with aggressive lipid lowering. Here, we describe a diet-inducible mouse model that develops widespread advanced atherosclerosis in coronary, brachiocephalic, and carotid arteries with plaque rupture, MI, and stroke. METHODS: We characterized a novel mouse model with a C-terminal mutation in the scavenger receptor class B, type 1 (SR-BI), combined with Ldlr knockout (designated SR-BI∆CT/∆CT/Ldlr-/-). Mice were fed Western diet (WD) for 26 weeks and analyzed for MI and stroke. Coronary, brachiocephalic, and carotid arteries were analyzed for atherosclerotic lesions and indices of plaque stability. To validate the utility of this model, SR-BI∆CT/∆CT/Ldlr-/- mice were treated with the drug candidate AZM198, which inhibits myeloperoxidase, an enzyme produced by activated neutrophils that predicts rupture of human atherosclerotic lesions. RESULTS: SR-BI∆CT/∆CT/Ldlr-/- mice show high (>80%) mortality rates after 26 weeks of WD feeding because of major adverse cardiovascular events, including spontaneous plaque rupture with MI and stroke. Moreover, WD-fed SR-BI∆CT/∆CT/Ldlr-/- mice displayed elevated circulating high-sensitivity cardiac troponin I and increased neutrophil extracellular trap formation within lesions compared with control mice. Treatment of WD-fed SR-BI∆CT/∆CT/Ldlr-/- mice with AZM198 showed remarkable benefits, including >90% improvement in survival and >60% decrease in the incidence of plaque rupture, MI, and stroke, in conjunction with decreased circulating high-sensitivity cardiac troponin I and reduced neutrophil extracellular trap formation within lesions. CONCLUSIONS: WD-fed SR-BI∆CT/∆CT/Ldlr-/- mice more closely replicate late-stage clinical events of advanced human atherosclerotic disease than previous models and can be used to identify and test potential new therapeutic agents to prevent major adverse cardiac events.

3.
Arterioscler Thromb Vasc Biol ; 44(4): 898-914, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328934

RESUMEN

BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/metabolismo , Estudio de Asociación del Genoma Completo , Proteómica , Músculo Liso Vascular/metabolismo , Aorta/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1379-1392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38695167

RESUMEN

BACKGROUND: Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions is the global leading cause of death. The most common and effective means to reduce these major adverse cardiovascular events, including myocardial infarction and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, we know little regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. METHODS: Smooth muscle cell lineage-tracing Apoe-/- mice were fed a high-cholesterol Western diet for 18 weeks and then a zero-cholesterol standard laboratory diet for 12 weeks before treating them with an IL (interleukin)-1ß or control antibody for 8 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of smooth muscle cell and other lesion cells by smooth muscle cell lineage tracing combined with single-cell RNA sequencing, cytometry by time-of-flight, and immunostaining plus high-resolution confocal microscopic z-stack analysis. RESULTS: Lipid lowering by switching Apoe-/- mice from a Western diet to a standard laboratory diet reduced LDL cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden, as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1ß antibody treatment after diet-induced reductions in lipids resulted in multiple detrimental changes including increased plaque burden and brachiocephalic artery lesion size, as well as increasedintraplaque hemorrhage, necrotic core area, and senescence as compared with IgG control antibody-treated mice. Furthermore, IL-1ß antibody treatment upregulated neutrophil degranulation pathways but downregulated smooth muscle cell extracellular matrix pathways likely important for the protective fibrous cap. CONCLUSIONS: Taken together, IL-1ß appears to be required for the maintenance of standard laboratory diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Interleucina-1beta , Ratones Noqueados para ApoE , Miocitos del Músculo Liso , Placa Aterosclerótica , Animales , Interleucina-1beta/metabolismo , Aterosclerosis/patología , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Aterosclerosis/genética , Ratones , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Masculino , Dieta Occidental , Ratones Endogámicos C57BL , Aorta/patología , Aorta/metabolismo , Aorta/efectos de los fármacos , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Dieta Alta en Grasa , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Tronco Braquiocefálico/patología , Tronco Braquiocefálico/metabolismo , Tronco Braquiocefálico/efectos de los fármacos
5.
Arterioscler Thromb Vasc Biol ; 43(2): 203-211, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36519470

RESUMEN

BACKGROUND: The Myh11 promoter is extensively used as a smooth muscle cell (SMC) Cre-driver and is regarded as the most restrictive and specific promoter available to study SMCs. Unfortunately, in the existing Myh11-CreERT2 mouse, the transgene was inserted on the Y chromosome precluding the study of female mice. Given the importance of including sex as a biological variable and that numerous SMC-based diseases have a sex-dependent bias, the field has been tremendously limited by the lack of a model to study both sexes. Here, we describe a new autosomal Myh11-CreERT2 mouse (referred to as Myh11-CreERT2-RAD), which allows for SMC-specific lineage tracing and gene knockout studies in vivo using both male and female mice. METHODS: A Myh11-CreERT2-RAD transgenic C57BL/6 mouse line was generated using bacterial artificial chromosome clone RP23-151J22 modified to contain a Cre-ERT2 after the Myh11 start codon. Myh11-CreERT2-RAD mice were crossed with 2 different fluorescent reporter mice and tested for SMC-specific labeling by flow cytometric and immunofluorescence analyses. RESULTS: Myh11-CreERT2-RAD transgene insertion was determined to be on mouse chromosome 2. Myh11-CreERT2-RAD fluorescent reporter mice showed Cre-dependent, tamoxifen-inducible labeling of SMCs equivalent to the widely used Myh11-CreERT2 mice. Labeling was equivalent in both male and female Cre+ mice and was limited to vascular and visceral SMCs and pericytes in various tissues as assessed by immunofluorescence. CONCLUSIONS: We generated and validated the function of an autosomal Myh11-CreERT2-RAD mouse that can be used to assess sex as a biological variable with respect to the normal and pathophysiological functions of SMCs.


Asunto(s)
Integrasas , Miocitos del Músculo Liso , Ratones , Animales , Masculino , Femenino , Ratones Transgénicos , Técnicas de Inactivación de Genes , Integrasas/genética , Integrasas/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Linaje de la Célula , Tamoxifeno
6.
Arterioscler Thromb Vasc Biol ; 43(10): 1836-1850, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37589136

RESUMEN

BACKGROUND: Women presenting with coronary artery disease more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. METHODS: Gene regulatory networks were created using RNAseq gene expression data from human carotid atherosclerotic plaques. The networks were prioritized based on sex bias, relevance for smooth muscle biology, and coronary artery disease genetic enrichment. Network expression was linked to histologically determined plaque phenotypes. In addition, their expression in plaque cell types was studied at single-cell resolution using single-cell RNAseq. Finally, their relevance for disease progression was studied in female and male Apoe-/- mice fed a Western diet for 18 and 30 weeks. RESULTS: Here, we identify multiple sex-stratified gene regulatory networks from human carotid atherosclerotic plaques. Prioritization of the female networks identified 2 main SMC gene regulatory networks in late-stage atherosclerosis. Single-cell RNA sequencing mapped these female networks to 2 SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like network was mostly expressed in plaques that were vulnerable in women. Finally, the mice ortholog of key driver gene MFGE8 (milk fat globule EGF and factor V/VIII domain containing) showed retained expression in advanced plaques from female mice but was downregulated in male mice during atherosclerosis progression. CONCLUSIONS: Female atherosclerosis is characterized by gene regulatory networks that are active in fibrous vulnerable plaques rich in myofibroblast-like SMCs.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Femenino , Masculino , Humanos , Ratones , Animales , Placa Aterosclerótica/patología , Redes Reguladoras de Genes , Miofibroblastos/metabolismo , Enfermedad de la Arteria Coronaria/patología , Aterosclerosis/patología , Miocitos del Músculo Liso/metabolismo
7.
Environ Res ; 245: 118057, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154565

RESUMEN

Reduced graphene oxide/iron nanoparticles (rGO/FeNPs) synthesized by the chemical method have been used in Fenton oxidation of organic contaminants, yet little is known about biosynthesized rGO/FeNPs using green tea extract (GT) as how to activate persulfate in sulfate radical-based advanced oxidation processes. In this study, rGO/FeNPs were used to activate peroxydisulfate (PDS) for 17ß-estradiol (ßE2) and estriol (E3) removal. The rGO/FeNPs-PDS system removed 83.6% of ßE2 and 62.5% of E3 within 240 min, which was confirmed by a combination of adsorption and degradation via both radical and non-radical pathways. Four main reactive species in ßE2 and E3 degradation were observed, i.e., hydroxyl radical (·OH), sulfate radical (SO4·-), singlet oxygen (1O2) and electron transfer, with the respective contributions of ·OH (32.9 and 34.7%), SO4·- (16.1 and 19.7%), 1O2 (12.2 and 14.1%) and electron transfer (8.0 and 7.2%). Analysis of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Electron Paramagnetic Resonance (EPR) and electrochemical measurements all indicated that beside the well-known role of Fe, CO from rGO through the generation of ·OH, SO4·-, 1O2 and electron transfer, as well as GT through electron transfer also participated in the activation of PDS. Finally, the degradation pathways of ßE2/E3 were proposed. Overall, this study provides a new insight into the biosynthesis of rGO/FeNPs to activate PDS for the oxidation of mixed emerging contaminants.


Asunto(s)
Nanocompuestos , Sulfatos , Oxidación-Reducción , Nanocompuestos/química , Hierro/química , Estriol
8.
Ethn Health ; 29(4-5): 447-464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38842432

RESUMEN

OBJECTIVES: Higher prevalence of several chronic diseases occurs in men in the United States, including diabetes and prediabetes. Of the 34 million adults with diabetes and 88 million with prediabetes there is a higher prevalence of both conditions in men compared to women. Black, Hispanic, and American Indian men have some of the highest rates of diabetes and diabetes complications. Adopting a healthy lifestyle including healthy eating and physical activity, is important in preventing type 2 diabetes and diabetes complications. DESIGN: This study included six focus groups that explored facilitators and barriers to adopting a healthy lifestyle in Black, Hispanic, and American Indian men with diabetes or at risk for type 2 diabetes. Thematic analysis was used to identify facilitators and barriers to adopting a healthy lifestyle. RESULTS: Participants included males 18 years of age and older identifying as Black, Hispanic, or American Indian and diagnosed with prediabetes, diabetes, hypertension, or otherwise at risk for type 2 diabetes. Thirty-seven men participated, 19 diagnosed with diabetes and 18 at risk for type 2 diabetes. Fourteen Black, 14 Hispanic, and 9 American Indian men participated. The themes of facilitators to a healthy lifestyle included: family and the social network; psychosocial factors; health status, health priorities and beliefs about aging; knowledge about health and healthy behavior; and healthy community resources. Themes of barriers to a healthy lifestyle also included: mistrust of the health care system, cost, and low socioeconomic status. CONCLUSIONS: This study underscores the complexity of factors involved in adopting a healthy lifestyle for some racial and ethnic minority men with diabetes or at risk for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Grupos Focales , Estilo de Vida Saludable , Hispánicos o Latinos , Investigación Cualitativa , Humanos , Masculino , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/prevención & control , Diabetes Mellitus Tipo 2/epidemiología , Persona de Mediana Edad , Hispánicos o Latinos/psicología , Hispánicos o Latinos/estadística & datos numéricos , Adulto , Negro o Afroamericano/psicología , Negro o Afroamericano/estadística & datos numéricos , Estados Unidos/epidemiología , Indígenas Norteamericanos/psicología , Anciano , Estado Prediabético/etnología , Estado Prediabético/psicología , Ejercicio Físico , Conductas Relacionadas con la Salud/etnología
9.
J Environ Manage ; 351: 119998, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169266

RESUMEN

Due to their use in a number of advanced electronic technologies, Rare earth elements (REEs) have recently emerged as a key strategic resource for many nations worldwide. The significant increase in demand for REEs has thus greatly increased the mining of these substances, but this industrial-scale expansion of mining activities also poses potential risks to the surrounding environment, flora, fauna, and humans. Hence efficient REE remediation is one potential remediation process involving in situ clean-up of contaminated soil which has gained much attention in recent years, due to its low cost and lack of secondary pollution. However, some crucial aspects of phytoremediation, such as the precise-mechanisms of absorption, transport, and tolerance of REEs by hyperaccumulators -are poorly understood. This review briefly discusses the environmental risks associated with excess REEs, the efficacy of phytoremediation technologies coupled with, appropriate hyperaccumulator species to migrate REEs exposure. While REEs hyperaccumulator species should ideally be large-biomass trees and shrubs suitable for cropping in subtropical regions areas, such species have not yet been found. Specifically, this review focuses on the factors affecting the bioavailability of REEs in plants, where organic acids are critical ligands promoting efficient transport and uptake. Thus the uptake, transport, and binding forms of REEs in the above-ground parts of hyperaccumulators, especially the transporters isolated from the heavy metal transporter families, are discussed in detail. Finally, having summarized the current state of research in this area, this review proceeds to discuss current knowledge gaps and research directions. With a focus on hyperaccumulators, this review serves as a basis for future phytoremediation strategies of rare earth mining-impacted environments and addresses ecosystem/environmental degradation issues resulting from such mining activity.


Asunto(s)
Metales Pesados , Metales de Tierras Raras , Contaminantes del Suelo , Humanos , Ecosistema , Metales de Tierras Raras/análisis , Plantas/química , Biodegradación Ambiental , Suelo/química , Contaminantes del Suelo/análisis
11.
Arterioscler Thromb Vasc Biol ; 42(8): 942-956, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35735018

RESUMEN

BACKGROUND: Smooth muscle cells (SMCs) in atherosclerotic plaque take on multiple nonclassical phenotypes that may affect plaque stability and, therefore, the likelihood of myocardial infarction or stroke. However, the mechanisms by which these cells affect stability are only beginning to be explored. METHODS: In this study, we investigated the contribution of inflammatory MCP1 (monocyte chemoattractant protein 1) produced by both classical Myh11 (myosin heavy chain 11)+ SMCs and SMCs that have transitioned through an Lgals3 (galectin 3)+ state in atherosclerosis using smooth muscle lineage tracing mice that label all Myh11+ cells and a dual lineage tracing system that targets Lgals3-transitioned SMC only. RESULTS: We show that loss of MCP1 in all Myh11+ smooth muscle results in a paradoxical increase in plaque size and macrophage content, driven by a baseline systemic monocytosis early in atherosclerosis pathogenesis. In contrast, knockout of MCP1 in Lgals3-transitioned SMCs using a complex dual lineage tracing system resulted in lesions with an increased Acta2 (actin alpha 2, smooth muscle)+ fibrous cap and decreased investment of Lgals3-transitioned SMCs, consistent with increased plaque stability. Finally, using flow cytometry and single-cell RNA sequencing, we show that MCP1 produced by Lgals3-transitioned SMCs influences multiple populations of inflammatory cells in late-stage plaques. CONCLUSIONS: MCP1 produced by classical SMCs influences monocyte levels beginning early in disease and was atheroprotective, while MCP1 produced by the Lgals3-transitioned subset of SMCs exacerbated plaque pathogenesis in late-stage disease. Results are the first to determine the function of Lgals3-transitioned inflammatory SMCs in atherosclerosis and highlight the need for caution when considering therapeutic interventions involving MCP1.


Asunto(s)
Aterosclerosis , Quimiocina CCL2 , Placa Aterosclerótica , Animales , Aterosclerosis/patología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/patología
12.
Proc Natl Acad Sci U S A ; 117(27): 15818-15826, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32541024

RESUMEN

Atherosclerosis is the process underlying heart attack and stroke. Despite decades of research, its pathogenesis remains unclear. Dogma suggests that atherosclerotic plaques expand primarily via the accumulation of cholesterol and inflammatory cells. However, recent evidence suggests that a substantial portion of the plaque may arise from a subset of "dedifferentiated" vascular smooth muscle cells (SMCs) which proliferate in a clonal fashion. Herein we use multicolor lineage-tracing models to confirm that the mature SMC can give rise to a hyperproliferative cell which appears to promote inflammation via elaboration of complement-dependent anaphylatoxins. Despite being extensively opsonized with prophagocytic complement fragments, we find that this cell also escapes immune surveillance by neighboring macrophages, thereby exacerbating its relative survival advantage. Mechanistic studies indicate this phenomenon results from a generalized opsonin-sensing defect acquired by macrophages during polarization. This defect coincides with the noncanonical up-regulation of so-called don't eat me molecules on inflamed phagocytes, which reduces their capacity for programmed cell removal (PrCR). Knockdown or knockout of the key antiphagocytic molecule CD47 restores the ability of macrophages to sense and clear opsonized targets in vitro, allowing for potent and targeted suppression of clonal SMC expansion in the plaque in vivo. Because integrated clinical and genomic analyses indicate that similar pathways are active in humans with cardiovascular disease, these studies suggest that the clonally expanding SMC may represent a translational target for treating atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Clonación Molecular , Activación de Complemento , Miocitos del Músculo Liso/metabolismo , Fagocitosis/fisiología , Animales , Antígeno CD47/metabolismo , Linaje de la Célula , Proliferación Celular , Complemento C3/genética , Complemento C3/metabolismo , Femenino , Humanos , Inflamación , Macrófagos/metabolismo , Masculino , Ratones Noqueados para ApoE , Miocitos del Músculo Liso/citología , Placa Aterosclerótica/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba
13.
Circulation ; 143(7): 713-726, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33499648

RESUMEN

BACKGROUND: Although sex differences in coronary artery disease are widely accepted with women developing more stable atherosclerosis than men, the underlying pathobiology of such differences remains largely unknown. In coronary artery disease, recent integrative systems biological studies have inferred gene regulatory networks (GRNs). Within these GRNs, key driver genes have shown great promise but have thus far been unidentified in women. METHODS: We generated sex-specific GRNs of the atherosclerotic arterial wall in 160 women and age-matched men in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task). We integrated the female GRNs with single-cell RNA-sequencing data of the human atherosclerotic plaque and single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic smooth muscle cell (SMC) lineage-tracing mice. RESULTS: By comparing sex-specific GRNs, we observed clear sex differences in network activity within the atherosclerotic tissues. Genes more active in women were associated with mesenchymal cells and endothelial cells, whereas genes more active in men were associated with the immune system. We determined that key drivers of GRNs active in female coronary artery disease were predominantly found in (SMCs by single-cell sequencing of the human atherosclerotic plaques, and higher expressed in female plaque SMCs, as well. To study the functions of these female SMC key drivers in atherosclerosis, we examined single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic SMC lineage-tracing mice. The female key drivers were found to be expressed by phenotypically modulated SMCs and affected by Klf4, suggesting that sex differences in atherosclerosis involve phenotypic switching of plaque SMCs. CONCLUSIONS: Our systems approach provides novel insights into molecular mechanisms that underlie sex differences in atherosclerosis. To discover sex-specific therapeutic targets for atherosclerosis, an increased emphasis on sex-stratified approaches in the analysis of multi-omics data sets is warranted.


Asunto(s)
Aterosclerosis/genética , Redes Reguladoras de Genes/genética , Miocitos del Músculo Liso/metabolismo , Animales , Aterosclerosis/fisiopatología , Diferenciación Celular , Femenino , Humanos , Ratones , Fenotipo
14.
Circ Res ; 127(12): 1552-1565, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33040646

RESUMEN

RATIONALE: Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. Recent genome-wide association studies revealed 163 loci associated with CAD. However, the precise molecular mechanisms by which the majority of these loci increase CAD risk are not known. Vascular smooth muscle cells (VSMCs) are critical in the development of CAD. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. OBJECTIVE: To identify genetic variants associated with atherosclerosis-relevant phenotypes in VSMCs. METHODS AND RESULTS: We quantified 12 atherosclerosis-relevant phenotypes related to calcification, proliferation, and migration in VSMCs isolated from 151 multiethnic heart transplant donors. After genotyping and imputation, we performed association mapping using 6.3 million genetic variants. We demonstrated significant variations in calcification, proliferation, and migration. These phenotypes were not correlated with each other. We performed genome-wide association studies for 12 atherosclerosis-relevant phenotypes and identified 4 genome-wide significant loci associated with at least one VSMC phenotype. We overlapped the previously identified CAD loci with our data set and found nominally significant associations at 79 loci. One of them was the chromosome 1q41 locus, which harbors MIA3. The G allele of the lead risk single nucleotide polymorphism (SNP) rs67180937 was associated with lower VSMC MIA3 expression and lower proliferation. Lentivirus-mediated silencing of MIA3 (melanoma inhibitory activity protein 3) in VSMCs resulted in lower proliferation, consistent with human genetics findings. Furthermore, we observed a significant reduction of MIA3 protein in VSMCs in thin fibrous caps of late-stage atherosclerotic plaques compared to early fibroatheroma with thick and protective fibrous caps in mice and humans. CONCLUSIONS: Our data demonstrate that genetic variants have significant influences on VSMC function relevant to the development of atherosclerosis. Furthermore, high MIA3 expression may promote atheroprotective VSMC phenotypic transitions, including increased proliferation, which is essential in the formation or maintenance of a protective fibrous cap.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , Variación Genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Aterosclerosis/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibrosis , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones Noqueados para ApoE , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fenotipo , Polimorfismo de Nucleótido Simple
15.
Arterioscler Thromb Vasc Biol ; 41(1): 284-301, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054397

RESUMEN

OBJECTIVE: Smooth muscle cells and pericytes display remarkable plasticity during injury and disease progression. Here, we tested the hypothesis that perivascular cells give rise to Klf4-dependent macrophage-like cells that augment adipose tissue (AT) inflammation and metabolic dysfunction associated with diet-induced obesity (DIO). Approach and Results: Using Myh11-CreERT2 eYFP (enhanced yellow fluorescent protein) mice and flow cytometry of the stromovascular fraction of epididymal AT, we observed a large fraction of smooth muscle cells and pericytes lineage traced eYFP+ cells expressing macrophage markers. Subsequent single-cell RNA sequencing, however, showed that the majority of these cells had no detectable eYFP transcript. Further exploration revealed that intraperitoneal injection of tamoxifen in peanut oil, used for generating conditional knockout or reporter mice in thousands of previous studies, resulted in large increase in the autofluorescence and false identification of macrophages within epididymal AT as being eYFP+; and unintended proinflammatory consequences. Using newly generated Myh11-DreERT2tdTomato mice given oral tamoxifen, we virtually eliminated the problem with autofluorescence and identified 8 perivascular cell dominated clusters, half of which were altered upon DIO. Given that perivascular cell KLF4 (kruppel-like factor 4) can have beneficial or detrimental effects, we tested its role in obesity-associated AT inflammation. While smooth muscle cells and pericytes-specific Klf4 knockout (smooth muscle cells and pericytes Klf4Δ/Δ) mice were not protected from DIO, they displayed improved glucose tolerance upon DIO, and showed marked decreases in proinflammatory macrophages and increases in LYVE1+ lymphatic endothelial cells in the epididymal AT. CONCLUSIONS: Perivascular cells within the AT microvasculature dynamically respond to DIO and modulate tissue inflammation and metabolism in a KLF4-dependent manner.


Asunto(s)
Tejido Adiposo/metabolismo , Plasticidad de la Célula , Factores de Transcripción de Tipo Kruppel/metabolismo , Miocitos del Músculo Liso/metabolismo , Obesidad/metabolismo , Paniculitis/metabolismo , Pericitos/metabolismo , Tejido Adiposo/patología , Animales , Glucemia/metabolismo , Linaje de la Célula , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Mediadores de Inflamación/metabolismo , Resistencia a la Insulina , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Noqueados , Miocitos del Músculo Liso/patología , Obesidad/etiología , Obesidad/genética , Obesidad/patología , Paniculitis/etiología , Paniculitis/genética , Paniculitis/patología , Pericitos/patología
16.
Environ Res ; 213: 113710, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724726

RESUMEN

Fruit waste disposal is a serious global problem with only 20% of such waste being routinely treated prior to discharge. Two of the most polluting fruit wastes are orange peel and walnut shell and new methods are urgently required to valorize such waste. In the present study, they where valorized via conversion into biochars at 500 °C (OPB500 for orange peel-based biochar produced at 500 °C and WaSB500 for walnut shell-based biochar produced at 500 °C), and evaluated for arsenic adsorption. A pore-rich surface morphology was observed with a low H/C ratio indicating high stability. Spectroscopic studies revealed the presence of minerals and surface functional groups (amide, carbonyl, carboxyl, and hydroxyl) suggesting high potential for arsenic immobilization. Adsorption studies revealed an arsenic removal efficiency of 88.8 ± 0.04% for WaSB500 exposed to initial arsenic concentration of 8 ppm for 5% biochar dose at 25 °C and 30 min contact time. In comparison, OPB500 showed slightly lower removal efficiency of 80.7 ± 0.1% (10 ppm initial concentration, 5% dose, 25 °C, 90 min contact time). Peak shifts in XRD and FTIR spectra together with isotherm, kinetic, and thermodynamic studies suggested arsenic sequestration was achieved via a combination of chemisorption, physisorption, ion exchange, and diffusion. The present investigation suggests valorization of fruit waste into thermo-stable biochars for sustainable arsenic remediation in dynamic soil/water systems and establishes biochar's importance for waste biomass minimization and metal (loid) removal from fertile soils.


Asunto(s)
Arsénico , Adsorción , Arsénico/química , Carbón Orgánico/química , Frutas , Suelo
17.
Environ Res ; 212(Pt C): 113431, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35569538

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are highly persistent, manufactured chemicals used in various manufacturing processes and found in numerous commercial products. With over 9000 compounds belonging to this chemical class, there is increasing concern regarding human exposure to these compounds due to their persistent, bioaccumulative, and toxic nature. Human exposure to PFAS may occur from a variety of exposure sources, including, air, food, indoor dust, soil, water, from the transfer of PFAS from non-stick wrappers to food, use of cosmetics, and other personal care products. This critical review presents recent research on the health-related impacts of PFAS exposure, highlighting compounds other than Perfluorooctanoic acid (PFOA) and Perfluoroctane sulfonate (PFOS) that cause adverse health effects, updates the current state of knowledge on PFAS toxicity, and, where possible, elucidates cause-and-effect relationships. Recent reviews identified that exposure to PFAS was associated with adverse health impacts on female and male fertility, metabolism in pregnancy, endocrine function including pancreatic dysfunction and risk of developing Type 2 diabetes, lipid metabolism and risk of childhood adiposity, hepatic and renal function, immune function, cardiovascular health (atherosclerosis), bone health including risk for dental cavities, osteoporosis, and vitamin D deficiency, neurological function, and risk of developing breast cancer. However, while cause-and-effect relationships for many of these outcomes were not able to be clearly elucidated, it was identified that 1) the evidence derived from both animal models and humans suggested that PFAS may exert harmful impacts on both animals and humans, however extrapolating data from animal to human studies was complicated due to differences in exposure/elimination kinetics, 2) PFAS precursor kinetics and toxicity mechanism data are still limited despite ongoing exposures, and 3) studies in humans, which provide contrasting results require further investigation of the long-term-exposed population to better evaluate the biological toxicity of chronic exposure to PFAS.


Asunto(s)
Ácidos Alcanesulfónicos , Diabetes Mellitus Tipo 2 , Fluorocarburos , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/toxicidad , Animales , Caprilatos/toxicidad , Polvo , Femenino , Fluorocarburos/análisis , Fluorocarburos/toxicidad , Masculino , Embarazo
18.
Diabetes Spectr ; 35(2): 198-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668882

RESUMEN

OBJECTIVE: Diabetes affects nearly 12.2% of U.S. adults. Comorbid depressive symptoms among U.S. workers with diabetes are associated with increased unemployment and reduced work performance. This study examined the age-group-specific prevalence of depression among U.S. workers with self-reported diabetes and identified factors associated with depression. METHODS: Data from the 2014-2018 Behavioral Risk Factor Surveillance System were used to examine the prevalence of depression among adult workers with diabetes in the United States. Relationships between depression prevalence and diabetes and demographic, physical, and behavioral risk factors were examined through bivariate and multivariable analyses. Age was categorized into four groups: 18-34, 35-54, 55-64, and ≥65 years. RESULTS: The overall prevalence of self-reported depression among U.S. workers with diabetes was 17.4-30% higher than among those without diabetes. Workers with diabetes aged 18-34 years had the highest depression prevalence (28.7%) compared with other age-groups. Female workers with diabetes were significantly more likely than male workers to report depression in all age-groups. Young adult workers with diabetes who had another chronic disease were nearly three times more likely to report depression than those without another chronic condition. There were no overlapping patterns of prevalence of diabetes and depression by state. CONCLUSION: Workers with diabetes are at an increased risk of depression, which can affect their overall health and productivity. These findings indicate that, among those with diabetes, young adult workers and women are most likely to have depression. Employee wellness programs may address the specific needs of individuals with diabetes and depression.

19.
Int J Phytoremediation ; 24(11): 1193-1204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34995161

RESUMEN

We conducted a pot experiment to evaluate the potential for soil- and foliar-applied silicon (Si), alone and in combination, to a Cd-contaminated soil in order to evaluate the effects on such amendments on the Cd translocation from soil to wheat root, shoot and grains. Five treatments were used, T1) control with no external factor added, T2 received only Cd, while T3-T5 treatments received Cd in combination with soil, foliar and soil plus foliar applied Si. Except control (T1), soil was contaminated with Cd at 10 mg kg-1 in all the treatments and 1% solution of Si as an amendment was used for soil and/or foliar application or their combination. Overall, while Si application improved both plant growth and yield in Cd-contaminated soil. Control and combined soil- and foliar-applied Si in Cd contaminated treatments showed equally positive (2.5%) increase in plant height over Cd contaminated treatment. Grain yield was also highest in the treatment receiving Cd plus soil-applied Si (29%) followed by control (26%). It was concluded that Si can alleviate Cd toxicity in wheat irrespective of whether the Si was soil-applied or applied via a foliar method, but soil applied Si proved the best in this regard.Novelty statement Immobilization of metals i.e., cadmium (Cd) with soil-applied amendments like biomaterials and organic manure to decrease Cd concentration in plants have already been widely investigated. Silicon (Si) is a cheap in-organic and readily available element in the nature and also used for the same purpose. It can be applied both in soil as well as by foliar and soil + foliar application to decrease the metals concentration in soil and plants. However, comparative effectiveness of these three methods have not been checked simultaneously. In this study, we have studied the comparative effectiveness of Si application to soil, foliar and their combination (soil + foliar) to decrease Cd concentration during wheat crop.


Asunto(s)
Oryza , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Silicio , Suelo , Contaminantes del Suelo/análisis , Triticum
20.
J Environ Manage ; 316: 115224, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35550961

RESUMEN

Plant-mediated synthesis of silver nanoparticles (Ag NPs) is a green and economically viable method, which can offer numerous benefits over traditional chemical and physical methods. In this paper, three fruit extracts (tomato, orange, and grapefruit) served simultaneously as stabilizing and reducing agents during the biosynthesis of Ag NPs. The formation of Ag NPs, were monitored using the UV-visible absorption spectra of Ag NPs which exhibited three distinct bands centered at 439, 413, and 410 nm. SEM and TEM analysis indicated that these bands corresponded to three distinct spherical-shaped Ag NPs having average particle sizes of 73, 24, and 31 nm, respectively. XRD and EDS spectral analyses were used to verify the degree of crystallinity, nanostructure, and presence of Ag NPs. Advanced analysis using XPS, FTIR, and GC-MS indicated that the Ag NPs were coated with a variety of organic compounds including acids, aldehydes, esters, and ketones, indicating that fruit derived phytochemicals had a significant role in synthesis, and subsequently a mechanism of Ag NPs formation was proposed. The fabricated nanoparticles were also successfully used in Fenton-like oxidation for the environmental remediation of estrone and estriol, with removal efficiencies of 52.1 and 35.9%, respectively.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/química , Estrógenos , Frutas , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA