Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Small ; 14(15): e1702444, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29493117

RESUMEN

Light-weight graphite foam decorated with carbon nanotubes (dia. 20-50 nm) is utilized as an effective electrode without binders, conductive additives, or metallic current collectors for supercapacitors in aqueous electrolyte. Facile nitric acid treatment renders wide operating potentials, high specific capacitances and energy densities, and long lifespan over 10 000 cycles manifested as 164.5 and 111.8 F g-1 , 22.85 and 12.58 Wh kg-1 , 74.6% and 95.6% capacitance retention for 2 and 1.8 V, respectively. Overcharge protection is demonstrated by repetitive cycling between 2 and 2.5 V for 2000 cycles without catastrophic structural demolition or severe capacity fading. Graphite foam without metallic strut possessing low density (≈0.4-0.45 g cm-3 ) further reduces the total weight of the electrode. The thorough investigation of the specific capacitances and coulombic efficiencies versus potential windows and current densities provides insights into the selection of operation conditions for future practical devices.

2.
Small ; 12(22): 2998-3004, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27099950

RESUMEN

Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

3.
Small ; 10(16): 3389-96, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-24753292

RESUMEN

In this work, we report the synthesis of an three-dimensional (3D) cone-shape CNT clusters (CCC) via chemical vapor deposition (CVD) with subsequent inductively coupled plasma (ICP) treatment. An innovative silicon decorated cone-shape CNT clusters (SCCC) is prepared by simply depositing amorphous silicon onto CCC via magnetron sputtering. The seamless connection between silicon decorated CNT cones and graphene facilitates the charge transfer in the system and suggests a binder-free technique of preparing lithium ion battery (LIB) anodes. Lithium ion batteries based on this novel 3D SCCC architecture demonstrates high reversible capacity of 1954 mAh g(-1) and excellent cycling stability (>1200 mAh g(-1) capacity with ≈ 100% coulombic efficiency after 230 cycles).

4.
iScience ; 27(3): 109154, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38524375

RESUMEN

In 2021, airplanes consumed nearly 250 million tons of fuel, equivalent to almost 10.75 exajoules. Anticipated growth in air travel suggests increasing fuel consumption. In January 2022, demand surged by 82.3%, as per the International Air Transport Association. In tackling aviation emissions, governments promote synthetic e-fuels to cut carbon. Sustainable aviation fuel (SAF) production increased from 1.9 million to 15.8 million gallons in six years. Although cost of kerosene produced with carbon dioxide from direct air capture (DAC) is several times higher than the cost of conventional jet fuel, its projected production cost is expected to decrease from $104-$124/MWh in 2030 to $60-$69/MWh in 2050. Advances in DAC technology, decreasing cost of renewable electricity, and improvements in FT technology are reasons to believe that the cost of e-kerosene will decline. This review describes major e-kerosene synthesis methods, incorporating DAC, hydrogen from water electrolysis, and hydrocarbon synthesis via the Fischer-Tropsch process. The importance of integrating e-fuel production with renewable energy sources and sustainable feedstock utilization cannot be overstated in achieving carbon emission circularity. The paper explores the concept of power-to-liquid (PtL) pathways, where renewable energy is used to convert renewable feedstocks into e-fuels. In addition to these technological improvements, carbon pricing, government subsidies, and public procurement are several policy initiatives that could help to reduce the cost of e-kerosene. Our review provides a comprehensive guide to the production pathways, technological advancements, and carbon emission circularity aspects of aviation e-fuels. It will provide a valuable resource for researchers, policymakers, industry stakeholders, and the general public interested in transitioning to a sustainable aviation industry.

5.
Small ; 9(21): 3714-21, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-23650047

RESUMEN

Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single-structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy-density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two-step process. The 3D few-layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α-MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as-prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg(-1) is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg(-1) ). A high specific capacitance (1108.79 F g(-1) ) and power density (799.84 kW kg(-1) ) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge-discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy-storage devices with high stability and power density in neutral aqueous electrolyte.

6.
Small ; 8(7): 1073-80, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22331656

RESUMEN

Graphene possesses many remarkable properties and shows promise as the future material for building nanoelectronic devices. For many applications such as graphene-based field-effect transistors (GFET), it is essential to control or modulate the electronic properties by means of doping. Using spatially controlled plasma-assisted CF(4) doping, the Dirac point shift of a GFET covered with a polycrystalline PS-P4VP block co-polymer (BCP) [poly(styrene-b-4-vinylpyridine)] having a cylindrical morphology can be controlled. By changing the chemical component of the microdomain (P4VP) and the major domain (PS) with the CF(4) plasma technique, the doping effect is demonstrated. This work provides a methodology where the Dirac point can be controlled via the different sensitivities of the PS and P4VP components of the BCP subjected to plasma processing.


Asunto(s)
Grafito/química , Nanoestructuras/química , Polímeros/química , Transporte de Electrón , Nanotecnología/métodos , Poliestirenos/química , Polivinilos/química , Transistores Electrónicos
7.
J Nanosci Nanotechnol ; 12(3): 2278-86, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22755048

RESUMEN

We investigated the data transmission performance of indium antimonide (InSb) nanowires synthesized on (100) type substrates using chemical vapor deposition and having diameters of 20 nm and below using the eye diagram approach of the transmission line. NW interconnect parameters including the bit error rate, quality factor, signal attenuation and maximum bandwidth have been extracted. Nanowires can sustain data rates of up to 10 mega bits per second (Mbps) without any impedance matching and de-embedding of the parasitic parameters coming from the measurement system, and the data rate is directly proportional to nanowire diameter.

8.
J Nanosci Nanotechnol ; 12(9): 6913-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035414

RESUMEN

Ultracapacitors are promising candidates for alternative energy storage applications since they can store and deliver energy at relatively high rates. Here, we present hybrid nanocarbon ultracapacitor electrodes with a low equivalent series resistance (ESR) of 7 ohms. 1-pyrenebutyric acid treated large-area single layer graphene (SLG) sheets covered with shortened multi-walled carbon nanotubes (MWNTs) have been utilized as highly conductive and percolated networks of hybrid carbon nanomaterial composites or thin films as ultracapacitor electrodes. Uniform centimeter scale single layer graphene sheets were produced via low pressure chemical vapor deposition using copper foil substrates and then subsequently modified by 1-pyrenebutyric acid functionalization. Chemically shortened MWNTs ranging in length of 200-500 nm, were deposited by drop casting on 1-pyrenebutyric acid functionalized SLG films. SLG/MWNT nancomposite hybrid films of different thicknesses were obtained by controlling the density of MWNT suspension. Surface morphology and nanostructure of the hybrid nanocomposites indicated relatively dense and homogeneous web-like networks. Specific capacitance values of the hybrid electrodes were substantially increased by 200% compared to those ultracapacitors fabricated using buckypaper electrodes. Average values of specific capacitance and energy density obtained were 140.64 F/g and 21.54 Wh/kg respectively. SLG/MWNT nanocomposite electrodes are very promising for future ultracapacitor devices with their low ESR value that is 95% lower than that of buckypaper based ultracapacitors.

9.
J Nanosci Nanotechnol ; 12(3): 1770-5, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22754980

RESUMEN

We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.

10.
MRS Commun ; 12(6): 1197-1203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284763

RESUMEN

Millions of cases of hospital-acquired infections occur every year involving difficult to treat bacterial and fungal agents. In an effort to improve patient outcomes and provide better infection control, antimicrobial coatings are ideal to apply in clinical settings in addition to aseptic practices. Most efforts involving effective antimicrobial surface technologies are limited by toxicity of exposure due to the diffusion. Therefore, surface-immobilized antimicrobial agents are an ideal solution to infection control. Presented herein is a method of producing carbon-coated copper/copper oxide nanoparticles. Our findings demonstrate the potential for these particles to serve as antimicrobial additives. Supplementary Information: The online version contains supplementary material available at 10.1557/s43579-022-00294-2.

11.
Small ; 7(18): 2598-606, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21815266

RESUMEN

A high-throughput metrology method for measuring the thickness and uniformity of entire large-area chemical vapor deposition-grown graphene sheets on arbitrary substrates is demonstrated. This method utilizes the quenching of fluorescence by graphene via resonant energy transfer to increase the visibility of graphene on a glass substrate. Fluorescence quenching is visualized by spin-coating a solution of polymer mixed with fluorescent dye onto the graphene then viewing the sample under a fluorescence microscope. A large-area fluorescence montage image of the dyed graphene sample is collected and processed to identify the graphene and indicate the graphene layer thickness throughout the entire graphene sample. Using this metrology method, the effect of different transfer techniques on the quality of the graphene sheet is studied. It is shown that small-area characterization is insufficient to truly evaluate the effect of the transfer technique on the graphene sample. The results indicate that introducing a drop of acetone or liquid poly(methyl methacrylate) (PMMA) on top of the transfer PMMA layer before soaking the graphene sample in acetone improves the quality of the graphene dramatically over immediately soaking the graphene in acetone. This work introduces a new method for graphene quantification that can quickly and easily identify graphene layers in a large area on arbitrary substrates. This metrology technique is well suited for many industrial applications due to its repeatability and flexibility.


Asunto(s)
Grafito/química , Acetona/química , Cristalización , Nanotecnología/métodos , Tamaño de la Partícula , Polimetil Metacrilato/química , Propiedades de Superficie
12.
J Transl Med ; 9: 34, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21450109

RESUMEN

BACKGROUND: Many peptide-based cancer vaccines have been tested in clinical trials with a limited success, mostly due to difficulties associated with peptide stability and delivery, resulting in inefficient antigen presentation. Therefore, the development of suitable and efficient vaccine carrier systems remains a major challenge. METHODS: To address this issue, we have engineered polylactic-co-glycolic acid (PLGA) nanoparticles incorporating: (i) two MHC class I-restricted clinically-relevant peptides, (ii) a MHC class II-binding peptide, and (iii) a non-classical MHC class I-binding peptide. We formulated the nanoparticles utilizing a double emulsion-solvent evaporation technique and characterized their surface morphology, size, zeta potential and peptide content. We also loaded human and murine dendritic cells (DC) with the peptide-containing nanoparticles and determined their ability to present the encapsulated peptide antigens and to induce tumor-specific cytotoxic T lymphocytes (CTL) in vitro. RESULTS: We confirmed that the nanoparticles are not toxic to either mouse or human dendritic cells, and do not have any effect on the DC maturation. We also demonstrated a significantly enhanced presentation of the encapsulated peptides upon internalization of the nanoparticles by DC, and confirmed that the improved peptide presentation is actually associated with more efficient generation of peptide-specific CTL and T helper cell responses. CONCLUSION: Encapsulating antigens in PLGA nanoparticles offers unique advantages such as higher efficiency of antigen loading, prolonged presentation of the antigens, prevention of peptide degradation, specific targeting of antigens to antigen presenting cells, improved shelf life of the antigens, and easy scale up for pharmaceutical production. Therefore, these findings are highly significant to the development of synthetic vaccines, and the induction of CTL for adoptive immunotherapy.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoterapia/métodos , Nanopartículas/química , Neoplasias/terapia , Péptidos/inmunología , Animales , Biodegradación Ambiental , Diferenciación Celular , Línea Celular Tumoral , Células Dendríticas/citología , Células Dendríticas/metabolismo , Endocitosis , Humanos , Proteínas Inmovilizadas/inmunología , Ácido Láctico/metabolismo , Ratones , Nanopartículas/ultraestructura , Neoplasias/inmunología , Fenotipo , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Linfocitos T Citotóxicos/inmunología
13.
Nanotechnology ; 22(35): 355701, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21817786

RESUMEN

We studied the photodesorption behavior of pristine and nitric acid (HNO(3)) treated graphene layers fabricated by chemical vapor deposition (CVD). The decrease in electrical conductivity and a negative shift of the Dirac point in graphene layers illuminated with ultraviolet light are caused by molecular photodesorption, while the UV illumination does not degrade the carrier mobility of graphene layers. When graphene layers were treated with concentrated HNO(3), the photodesorption-induced current decrease became less significant than for pristine graphene layers. We suggest this is due to the passivation of oxygen-bearing functionalities to CVD grown graphene structural defects by HNO(3) functionalization, which prevents the further absorption of gas molecules. Our results provide a new strategy for stabilizing the electrical performance of CVD grown large-area graphene layers for applications ranging from nanoelectronics to optoelectronics.

14.
J Nanosci Nanotechnol ; 11(6): 5258-63, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21770172

RESUMEN

We describe the fabrication of highly sensitive graphene based field effect transistor (FET) biosensors with a cost-effective approach and their application in label-free Deoxyribonucleic acid (DNA) detection. Chemical vapor deposition (CVD) grown graphene layers were used to achieve mass production of FET devices via conventional photolithographic patterning. Non-covalent functionalization of the graphene layer with 1-Pyrenebutanoic acid succinimidyl ester ensures high conductivity and sensitivity of the FET device. The present device could reach a detection limit as low as 3 x 10(-9) M.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/análisis , Grafito/química , Microscopía de Fuerza Atómica , Nanotecnología , Procesos Fotoquímicos
15.
Small ; 6(20): 2309-13, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20862676

RESUMEN

Graphene is a single sheet of carbon atoms with outstanding electrical and physical properties and is being exploited for applications in electronics, sensors, photovoltaics, and energy storage. A novel 3D architecture called a pillared graphene nanostructure (PGN) is a combination of two allotropes of carbon, including graphene and carbon nanotubes. A one-step chemical vapor deposition process for large-area PGN fabrication via a combination of surface catalysis and in situ vapor-liquid-solid mechanisms is described. A process by which PGN layers can be transferred onto arbitrary substrates while keeping the 3D architecture intact is also described. Single and multilayer stacked PGNs are envisioned for future ultralarge and tunable surface-area applications in hydrogen storage and supercapacitors.


Asunto(s)
Carbono/química , Grafito/química , Nanoestructuras/química , Nanotecnología/métodos , Microscopía Electrónica de Transmisión , Nanoestructuras/ultraestructura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura
16.
Small ; 6(21): 2448-52, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20878792

RESUMEN

In this work, the synthesis and characterization of three-dimensional hetergeneous graphene nanostructures (HGN) comprising continuous large-area graphene layers and ZnO nanostructures, fabricated via chemical vapor deposition, are reported. Characterization of large-area HGN demonstrates that it consists of 1-5 layers of graphene, and exhibits high optical transmittance and enhanced electrical conductivity. Electron microscopy investigation of the three-dimensional heterostructures shows that the morphology of ZnO nanostructures is highly dependent on the growth temperature. It is observed that ordered crystalline ZnO nanostructures are preferably grown along the <0001> direction. Ultraviolet spectroscopy and photoluminescence spectroscopy indicates that the CVD-grown HGN layers has excellent optical properties. A combination of electrical and optical properties of graphene and ZnO building blocks in ZnO-based HGN provides unique characteristics for opportunities in future optoelectronic devices.


Asunto(s)
Grafito/química , Nanoestructuras/química , Óxido de Zinc/química , Microscopía Electrónica de Rastreo , Nanoestructuras/ultraestructura , Nanotecnología/métodos
17.
Small ; 6(10): 1150-5, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20473987

RESUMEN

Patterning of biomolecules on graphene layers could provide new avenues to modulate their electrical properties for novel electronic devices. Single-stranded deoxyribonucleic acids (ssDNAs) are found to act as negative-potential gating agents that increase the hole density in single-layer graphene. Current-voltage measurements of the hybrid ssDNA/graphene system indicate a shift in the Dirac point and "intrinsic" conductance after ssDNA is patterned. The effect of ssDNA is to increase the hole density in the graphene layer, which is calculated to be on the order of 1.8 x 10(12) cm(-2). This increased density is consistent with the Raman frequency shifts in the G-peak and 2D band positions and the corresponding changes in the G-peak full width at half maximum. Ab initio calculations using density functional theory rule out significant charge transfer or modification of the graphene band structure in the presence of ssDNA fragments.


Asunto(s)
ADN/química , Grafito/química , Nanotecnología/métodos , Espectrometría Raman
18.
Nanomedicine ; 6(5): 651-61, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20348031

RESUMEN

Nanoparticles (NPs) are attractive carriers for vaccines. We have previously shown that a short peptide (Hp91) activates dendritic cells (DCs), which are critical for initiation of immune responses. In an effort to develop Hp91 as a vaccine adjuvant with NP carriers, we evaluated its activity when encapsulated in or conjugated to the surface of poly(d,l-lactic-co-glycolic) acid (PLGA) NPs. We found that Hp91, when encapsulated in or conjugated to the surface of PLGA-NPs, not only activates both human and mouse DCs, but is in fact more potent than free Hp91. Hp91 packaged within NPs was about fivefold more potent than the free peptide, and Hp91 conjugated to the surface of NPs was ∼20-fold more potent than free Hp91. Because of their capacity to activate DCs, such NP-Hp91 systems are promising as delivery vehicles for subunit vaccines against infectious disease or cancer. FROM THE CLINICAL EDITOR: In this paper, nanoparticle-based dendritic cell activating vaccines are described and discussed. The authors report that the presented PLGA NP based vaccine constructs increase the potency of the studied vaccine by up to 20-fold, making them promising as delivery vehicles for subunit vaccines against infectious diseases or cancer.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Ácido Láctico/química , Nanopartículas/química , Péptidos/química , Péptidos/farmacología , Ácido Poliglicólico/química , Animales , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
19.
Front Mol Biosci ; 7: 570003, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102521

RESUMEN

The identification of novel biomarkers and therapeutic targets in advanced cancer is critical for improving cancer diagnosis and therapeutics. Survivin (SV) is highly expressed predominantly in most cancer cells and tissues but is absent or undetectable in terminally differentiated normal adult tissues. Therefore, it functions as an almost universal tumor antigen. Peptides are short chains of amino acids linked by peptide bonds. To obtain novel SV decamers that are able to induce SV-specific cytotoxic T lymphocytes (CTLs) with a higher cytotoxic efficiency against cancer cells, major histocompatibility complex (MHC) peptide binding algorithms were conducted to predict nine modified SV95 decamers (from SV95-2 to SV95-10) based on the natural SV95-104 peptide sequence of ELTLGEFLKL (here defined as SV95-1). The fluorescent density of each SV95 peptide was determined by a MHC stability assay, followed by the generation of SV95-specific CTLs with each SV95 peptide (from SV95-1 to SV95-10) and human dendritic cells (DCs) loaded with Poly(lactic-co-glycolic) acid (PLGA) nanoparticles encapsulated with SV95 peptide. Finally, IFN-γ ELISpot and CytoTox 96® Non-Radioactive Cytotoxicity Assays were employed to verify their cytotoxic efficiency of the SV95-specific CTLs generated with the corresponding artificial antigen presenting cells (aAPCs) containing SV95 (SV95-1 to SV95-10) peptide. Furthermore, the cytotoxicity of the SV95 specific CTLs generated with nine mutated SV95 peptides was compared to the one generated with natural SV95-1 peptide and TIL2080 cells. The results indicated that the HLA-A2-restricted mutated SV95 epitope decamers (SV95-6 and SV95-7) showed significant higher binding ability compared to natural peptide SV95-1 in MHC stability assay. More importantly, SV95-specific CTLs with higher cytotoxicity were successfully induced with both SV95-6 and SV95-7 peptides, which significantly eliminated target cells (not only SV95-1 peptide pulsed T2 cells, but also both HLA-A2 and SV positive cancer cells) when compared to those generated with natural SV95-1 peptide and TIL2080 cells. These findings suggest that the SV95-6 and SV95-7 peptides are two novel HLA-A2-restricted CTL epitopes and may be useful for the immunotherapy for patients with survivin expressing cancer.

20.
ACS Appl Mater Interfaces ; 12(31): 35318-35327, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635717

RESUMEN

Two-dimensional (2D) hexagonal boron nitride (h-BN) plays a significant role in nanoscale electrical and optical devices because of its superior properties. However, the difficulties in the controllable growth of high-quality films hinder its applications. One of the crucial factors that influence the quality of the films obtained via epitaxy is the substrate property. Here, we report a study of 2D h-BN growth on carburized Ni substrates using molecular beam epitaxy. It was found that the carburization of Ni substrates with different surface orientations leads to different kinetics of h-BN growth. While the carburization of Ni(100) enhances the h-BN growth, the speed of the h-BN growth on carburized Ni(111) reduces. As-grown continuous single-layer h-BN films are used to fabricate Ni/h-BN/Ni metal-insulator-metal (MIM) devices, which demonstrate a high breakdown electric field of 12.9 MV/cm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA