Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762613

RESUMEN

Cell division requires dramatic reorganization of the cell cortex, which is primarily driven by the actomyosin network. We previously reported that protocadherin 7 (PCDH7) gets enriched at the cell surface during mitosis, which is required to build up the full mitotic rounding pressure. Here, we report that PCDH7 interacts with and is palmitoylated by the palmitoyltransferase, ZDHHC5. PCDH7 and ZDHHC5 colocalize at the mitotic cell surface and translocate to the cleavage furrow during cytokinesis. The localization of PCDH7 depends on the palmitoylation activity of ZDHHC5. Silencing PCDH7 increases the percentage of multinucleated cells and the duration of mitosis. Loss of PCDH7 expression correlates with reduced levels of active RhoA and phospho-myosin at the cleavage furrow. This work uncovers a palmitoylation-dependent translocation mechanism for PCDH7, which contributes to the reorganization of the cortical cytoskeleton during cell division.


Asunto(s)
Citocinesis , Protocadherinas , Lipoilación , Ciclo Celular , Mitosis , Cadherinas/genética
2.
Development ; 148(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33531432

RESUMEN

KIF2A is a kinesin motor protein with essential roles in neural progenitor division and axonal pruning during brain development. However, how different KIF2A alternative isoforms function during development of the cerebral cortex is not known. Here, we focus on three Kif2a isoforms expressed in the developing cortex. We show that Kif2a is essential for dendritic arborization in mice and that the functions of all three isoforms are sufficient for this process. Interestingly, only two of the isoforms can sustain radial migration of cortical neurons; a third isoform, lacking a key N-terminal region, is ineffective. By proximity-based interactome mapping for individual isoforms, we identify previously known KIF2A interactors, proteins localized to the mitotic spindle poles and, unexpectedly, also translation factors, ribonucleoproteins and proteins that are targeted to organelles, prominently to the mitochondria. In addition, we show that a KIF2A mutation, which causes brain malformations in humans, has extensive changes to its proximity-based interactome, with depletion of mitochondrial proteins identified in the wild-type KIF2A interactome. Our data raises new insights about the importance of alternative splice variants during brain development.


Asunto(s)
Diferenciación Celular/genética , Movimiento Celular/genética , Regulación de la Expresión Génica , Cinesinas/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Represoras/genética , Empalme Alternativo , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica , Cinesinas/metabolismo , Ratones , Mutación , Neurogénesis/genética , Proteómica/métodos , Isoformas de ARN , Proteínas Represoras/metabolismo
3.
Mol Cell Proteomics ; 21(11): 100417, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152754

RESUMEN

Clear cell Renal Cell Carcinoma (ccRCC) is among the 10 most common cancers in both men and women and causes more than 140,000 deaths worldwide every year. In order to elucidate the underlying molecular mechanisms orchestrated by phosphorylation modifications, we performed a comprehensive quantitative phosphoproteomics characterization of ccRCC tumor and normal adjacent tissues. Here, we identified 16,253 phosphopeptides, of which more than 9000 were singly quantified. Our in-depth analysis revealed 600 phosphopeptides to be significantly differentially regulated between tumor and normal tissues. Moreover, our data revealed that significantly up-regulated phosphoproteins are associated with protein synthesis and cytoskeletal re-organization which suggests proliferative and migratory behavior of renal tumors. This is supported by a mesenchymal profile of ccRCC phosphorylation events. Our rigorous characterization of the renal phosphoproteome also suggests that both epidermal growth factor receptor and vascular endothelial growth factor receptor are important mediators of phospho signaling in RCC pathogenesis. Furthermore, we determined the kinases p21-activated kinase 2, cyclin-dependent kinase 1 and c-Jun N-terminal kinase 1 to be master kinases that are responsible for phosphorylation of many substrates associated with cell proliferation, inflammation and migration. Moreover, high expression of p21-activated kinase 2 is associated with worse survival outcome of ccRCC patients. These master kinases are targetable by inhibitory drugs such as fostamatinib, minocycline, tamoxifen and bosutinib which can serve as novel therapeutic agents for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Masculino , Humanos , Femenino , Carcinoma de Células Renales/genética , Proteína Quinasa CDC2/metabolismo , Quinasas p21 Activadas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fosfopéptidos/metabolismo , Línea Celular Tumoral , Neoplasias Renales/genética , Transducción de Señal , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
4.
Proteins ; 90(6): 1315-1330, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35122331

RESUMEN

Circadian rhythms are a series of endogenous autonomous 24-h oscillations generated by the circadian clock. At the molecular level, the circadian clock is based on a transcription-translation feedback loop, in which BMAL1 and CLOCK transcription factors of the positive arm activate the expression of CRYPTOCHROME (CRY) and PERIOD (PER) genes of the negative arm as well as the circadian clock-regulated genes. There are three PER proteins, of which PER2 shows the strongest oscillation at both stability and cellular localization level. Protein-protein interactions (PPIs) or interactome of the circadian clock proteins have been investigated using classical methods such as two-dimensional gel electrophoresis, immunoprecipitation-coupled mass spectrometry, and yeast-two hybrid assay where the dynamic and weak interactions are difficult to catch. To identify the interactome of PER2 we have adopted proximity-dependent labeling with biotin and mass spectrometry-based identification of labeled proteins (BioID). In addition to known interactions with such as CRY1 and CRY2, we have identified several new PPIs for PER2 and confirmed some of them using co-immunoprecipitation technique. This study characterizes the PER2 protein interactions in depth, and it also implies that using a fast BioID method with miniTurbo or TurboID coupled to other major circadian clock proteins might uncover other interactors in the clock that have yet to be discovered.


Asunto(s)
Relojes Circadianos , Proteínas Circadianas Period , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteoma/metabolismo
5.
Mol Cell Proteomics ; 18(9): 1756-1771, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221721

RESUMEN

Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal/fisiología , Proteínas del Choque Térmico HSP40/metabolismo , Fosfoproteínas/metabolismo , Tetraspanina 28/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/genética , Femenino , Proteínas del Choque Térmico HSP40/genética , Humanos , Estimación de Kaplan-Meier , Neoplasias Mamarias Experimentales/patología , Ratones Desnudos , Reproducibilidad de los Resultados , Tetraspanina 28/genética
6.
J Proteome Res ; 19(8): 3583-3592, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32500712

RESUMEN

Comprehensive profiling of the cell-surface proteome has been challenging due to the lack of tools for an effective and reproducible way to isolate plasma membrane proteins from mammalian cells. Here we employ a proximity-dependent biotinylation approach to label and isolate plasma membrane proteins without an extra in vitro labeling step, which we call Plasma Membrane-BioID. The lipid-modified BirA* enzyme (MyrPalm BirA*) was targeted to the inner leaflet of the plasma membrane, where it effectively biotinylated plasma membrane proteins. Biotinylated proteins were then affinity-purified and analyzed by mass spectrometry. Our analysis demonstrates that combining conventional sucrose density gradient centrifugation and Plasma Membrane-BioID is ideal to overcome the inherent limitations of the identification of integral membrane proteins, and it yields highly pure plasma components for downstream proteomic analysis.


Asunto(s)
Proteínas de la Membrana , Proteómica , Animales , Biotinilación , Espectrometría de Masas , Proteoma
7.
EMBO J ; 34(2): 251-65, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25476450

RESUMEN

The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.


Asunto(s)
Biomarcadores/metabolismo , Interfase/fisiología , Proteínas de la Membrana/metabolismo , Mitosis/fisiología , Proteoma/análisis , Proteómica/métodos , Biotinilación , Cadherinas/metabolismo , Cromatografía de Afinidad , Células HeLa , Humanos , Células MCF-7 , Protocadherinas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
J Proteome Res ; 17(5): 1784-1793, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29651847

RESUMEN

Quantitative profiling of cell surface proteins is critically important for the understanding of cell-cell communication, signaling, tissue development, and homeostasis. Traditional proteomics methods are challenging for cell surface proteins due to their hydrophobic nature and low abundance, necessitating alternative methods to efficiently identify and quantify this protein group. Here we established carboxyl-reactive biotinylation for selective and efficient biotinylation and isolation of surface-exposed proteins of living cells. We assessed the efficiency of carboxyl-reactive biotinylation for plasma membrane proteins by comparing it with a well-established protocol, amine-reactive biotinylation, using SILAC (stable isotope labeling in cell culture). Our results show that carboxyl-reactive biotinylation of cell surface proteins is both more selective and more efficient than amine-reactive biotinylation. We conclude that it is a useful approach, which is partially orthogonal to amine-reactive biotinylation, allowing us to cast a wider net for a comprehensive profiling of cell surface proteins.


Asunto(s)
Biotinilación/métodos , Dióxido de Carbono/metabolismo , Proteínas de la Membrana/análisis , Animales , Células Cultivadas , Humanos , Marcaje Isotópico , Proteínas de la Membrana/aislamiento & purificación , Métodos , Coloración y Etiquetado/métodos
9.
EMBO J ; 33(4): 385-99, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24510915

RESUMEN

Using multiplexed quantitative proteomics, we analyzed cell cycle-dependent changes of the human proteome. We identified >4,400 proteins, each with a six-point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co-regulated, we clustered the proteins with abundance profiles most similar to known Anaphase-Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/C(CDH1)-dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1-dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de-)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteolisis , Proteómica , Secuencia de Aminoácidos , Ciclo Celular , Células HeLa , Humanos , Cinesinas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Ubiquitinación
10.
Proteomics ; 17(20)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28548456

RESUMEN

Cell division requires a coordinated action of the cell cycle machinery, cytoskeletal elements, chromosomes, and membranes. Cell division studies have greatly benefitted from the mass spectrometry (MS)-based proteomic approaches for probing the biochemistry of highly dynamic complexes and their coordination with each other as a cell progresses into division. In this review, the authors first summarize a wide-range of proteomic studies that focus on the identification of sub-cellular components/protein complexes of the cell division machinery including kinetochores, mitotic spindle, midzone, and centrosomes. The authors also highlight MS-based large-scale analyses of the cellular components that are largely understudied during cell division such as the cell surface and lipids. Then, the authors focus on posttranslational modification analyses, especially phosphorylation and the resulting crosstalk with other modifications as a cell undergoes cell division. Combining proteomic approaches that probe the biochemistry of cell division components with functional genomic assays will lead to breakthroughs toward a systems-level understanding of cell division.


Asunto(s)
División Celular/fisiología , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteómica , Centrosoma/metabolismo , Cromosomas/metabolismo , Humanos , Cinetocoros/metabolismo , Mitosis/fisiología , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Huso Acromático/metabolismo
11.
J Proteome Res ; 14(9): 4087-98, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26270265

RESUMEN

Cytokinesis is the last step of the cell cycle that requires coordinated activities of the microtubule cytoskeleton, actin cytoskeleton, and membrane compartments. Aurora B kinase is one of the master regulatory kinases that orchestrate multiple events during cytokinesis. To reveal targets of the Aurora B kinase, we combined quantitative mass spectrometry with chemical genetics. Using the quantitative proteomic approach, SILAC (stable isotope labeling with amino acids in cell culture), we analyzed the phosphoproteome of monopolar cytokinesis upon VX680- or AZD1152-mediated aurora kinase inhibition. In total, our analysis quantified over 20 000 phosphopeptides in response to the Aurora-B kinase inhibition; 246 unique phosphopeptides were significantly down-regulated and 74 were up-regulated. Our data provide a broad analysis of downstream effectors of Aurora kinase and offer insights into how Aurora kinase regulates cytokinesis.


Asunto(s)
Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/metabolismo , Fosfoproteínas/análisis , Proteoma/análisis , Proteoma/efectos de los fármacos , Citocinesis/efectos de los fármacos , Citocinesis/fisiología , Células HeLa , Humanos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteoma/metabolismo , Proteómica
12.
Analyst ; 139(19): 4733-49, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25068147

RESUMEN

Protein phosphorylation is a ubiquitous posttranslational modification, which is heavily involved in signal transduction. Misregulation of protein phosphorylation is often associated with a decrease in cell viability and complex diseases such as cancer. The dynamic and low abundant nature of phosphorylated proteins makes studying phosphoproteome a challenging task. In this review, we summarize state of the art proteomic techniques to study and quantify peptide phosphorylation in biological systems and discuss their limitations. Due to its short-lived nature, the phosphorylation event cannot be precisely traced in a heterogonous cell population, which highlights the importance of analyzing phosphorylation events at the single cell level. Mainly, we focus on the methodical and instrumental developments in proteomics and nanotechnology, which will help to build more accurate and robust systems for the feasibility of phosphorylation analysis at the single cell level. We propose that an automated and miniaturized construction of analytical systems holds the key to the future of phosphoproteomics; therefore, we highlight the benchmark studies in this direction. Having advanced and automated microfluidic chip LC systems will allow us to analyze single-cell phosphoproteomics and quantitatively compare it with others. The progress in the microfluidic chip LC systems and feasibility of the single-cell phosphoproteomics will be beneficial for early diagnosis and detection of the treatment response of many crucial diseases.


Asunto(s)
Espectrometría de Masas , Fosfopéptidos/análisis , Cromatografía Líquida de Alta Presión , Humanos , Microfluídica , Nanotecnología , Proteómica , Análisis de la Célula Individual
13.
J Proteomics ; 293: 105064, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38154551

RESUMEN

Urinary omics has become a powerful tool for elucidating pathophysiology of glomerular diseases. However, no urinary omics analysis has been performed yet on renal AA amyloidosis. Here, we performed a comparative urine proteomic and metabolomic analysis between recently diagnosed renal AA amyloidosis (AA) and membranous nephropathy (MN) patients. Urine samples of 22 (8 AA, 8 MN and 6 healthy control) patients were analyzed with nLC-MS/MS and GC/MS for proteomic and metabolomic studies, respectively. Pathological specimens were scored for glomerulosclerosis and tubulointerstitial fibrosis grades. Functional enrichment analysis between AA and control groups showed enrichment in cell adhesion related sub-domains. Uromodulin (UMOD) was lower, whereas ribonuclease 1 (RNase1) and α-1-microglobulin/bikunin precursor (AMBP) were higher in AA compared to MN group. Correlations were demonstrated between UMOD-proteinuria (r = -0.48, p = 0.03) and AMBP-eGFR (r = -0.69, p = 0.003) variables. Metabolomic analysis showed myo-inositol and urate were higher in AA compared to MN group. A positive correlation was detected between RNase1 and urate independent of eGFR values (r = 0.63, p = 0.01). Enrichment in cell adhesion related domains suggested a possible increased urinary shear stress due to amyloid fibrils. UMOD, AMBP and myo-inositol were related with tubulointerstitial damage, whereas RNase1 and urate were believed to be related with systemic inflammation in AA amyloidosis. SIGNIFICANCE: Urinary omics studies have become a standard tool for biomarker studies. However, no urinary omics analysis has been performed yet on renal AA amyloidosis. Here, we performed a comparative urinary omics analysis between recently diagnosed renal AA amyloidosis (AA), membranous nephropathy (MN) patients and healthy controls. Pathological specimens were scored with glomerulosclerosis (G) and tubulointerstitial fibrosis (IF) grades to consolidate the results of the omics studies and correlation analyzes. Functional enrichment analysis showed enrichment in cell adhesion related sub-domains due to downregulation of cadherins; which could be related with increased urinary shear stress due to amyloid deposition and disruption of tissue micro-architecture. In comparative proteomic analyzes UMOD was lower, whereas RNase1 and AMBP were higher in AA compared to MN group. Whereas in metabolomic analyzes; myo-inositol, urate and maltose were higher in AA compared to MN group. Correlations were demonstrated between UMOD-proteinuria (r = -0.48, p = 0.03), AMBP-eGFR (r = -0.69, p = 0.003) and between RNase1-Urate independent of eGFR values (r = 0.63, p = 0.01). This study is the first comprehensive urinary omics analysis focusing on renal AA Amyloidosis to the best of our knowledge. Based on physiologic roles and clinicopathologic correlations of the molecules; UMOD, AMBP and myo-inositol were related with tubulointerstitial damage, whereas RNase1 and urate were believed to be increased with systemic inflammation and endothelial damage in AA amyloidosis.


Asunto(s)
Amiloidosis , Glomerulonefritis Membranosa , Enfermedades Renales , Humanos , Glomerulonefritis Membranosa/patología , Ácido Úrico , Proteómica , Espectrometría de Masas en Tándem , Enfermedades Renales/patología , Proteinuria , Inflamación , Fibrosis , Inositol , Proteína Amiloide A Sérica
14.
Proteomics Clin Appl ; 17(2): e2200070, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36217943

RESUMEN

PURPOSE: Coronavirus disease 2019 (COVID-19) continues to threaten public health globally. Severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection-dependent alterations in the host cell signaling network may unveil potential target proteins and pathways for therapeutic strategies. In this study, we aim to define early severity biomarkers and monitor altered pathways in the course of SARS-CoV-2 infection. EXPERIMENTAL DESIGN: We systematically analyzed plasma proteomes of COVID-19 patients from Turkey by using mass spectrometry. Different severity grades (moderate, severe, and critical) and periods of disease (early, inflammatory, and recovery) are monitored. Significant alterations in protein expressions are used to reconstruct the COVID-19 associated network that was further extended to connect viral and host proteins. RESULTS: Across all COVID-19 patients, 111 differentially expressed proteins were found, of which 28 proteins were unique to our study mainly enriching in immunoglobulin production. By monitoring different severity grades and periods of disease, CLEC3B, MST1, and ITIH2 were identified as potential early predictors of COVID-19 severity. Most importantly, we extended the COVID-19 associated network with viral proteins and showed the connectedness of viral proteins with human proteins. The most connected viral protein ORF8, which has a role in immune evasion, targets many host proteins tightly connected to the deregulated human plasma proteins. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma proteomes from critical patients are intrinsically clustered in a distinct group than severe and moderate patients. Importantly, we did not recover any grouping based on the infection period, suggesting their distinct proteome even in the recovery phase. The new potential early severity markers can be further studied for their value in the clinics to monitor COVID-19 prognosis. Beyond the list of plasma proteins, our disease-associated network unravels altered pathways, and the possible therapeutic targets in SARS-CoV-2 infection by connecting human and viral proteins. Follow-up studies on the disease associated network that we propose here will be useful to determine molecular details of viral perturbation and to address how the infection affects human physiology.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/metabolismo , Proteómica , Proteoma , Proteínas Virales/metabolismo , Biomarcadores
15.
Biochem Pharmacol ; 218: 115896, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37898388

RESUMEN

Cryptochromes (CRYs), transcriptional repressors of the circadian clock in mammals, inhibit cAMP production when glucagon activates G-protein coupled receptors. Therefore, molecules that modulate CRYs have the potential to regulate gluconeogenesis. In this study, we discovered a new molecule called TW68 that interacts with the primary pockets of mammalian CRY1/2, leading to reduced ubiquitination levels and increased stability. In cell-based circadian rhythm assays using U2OS Bmal1-dLuc cells, TW68 extended the period length of the circadian rhythm. Additionally, TW68 decreased the transcriptional levels of two genes, Phosphoenolpyruvate carboxykinase 1 (PCK1) and Glucose-6-phosphatase (G6PC), which play crucial roles in glucose biosynthesis during glucagon-induced gluconeogenesis in HepG2 cells. Oral administration of TW68 in mice showed good tolerance, a good pharmacokinetic profile, and remarkable bioavailability. Finally, when administered to fasting diabetic animals from ob/ob and HFD-fed obese mice, TW68 reduced blood glucose levels by enhancing CRY stabilization and subsequently decreasing the transcriptional levels of Pck1 and G6pc. These findings collectively demonstrate the antidiabetic efficacy of TW68 in vivo, suggesting its therapeutic potential for controlling fasting glucose levels in the treatment of type 2 diabetes mellitus.


Asunto(s)
Relojes Circadianos , Diabetes Mellitus Tipo 2 , Animales , Ratones , Criptocromos/genética , Glucemia , Ratones Obesos , Glucagón , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ritmo Circadiano/fisiología , Mamíferos , Ayuno
16.
Mol Cell Proteomics ; 9(2): 336-50, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19786723

RESUMEN

The cytoskeleton globally reorganizes between mitosis (M phase) and cytokinesis (C phase), which presumably requires extensive regulatory changes. To reveal these changes, we undertook a comparative proteomics analysis of cells tightly drug-synchronized in each phase. We identified 25 proteins that bind selectively to microtubules in C phase and identified several novel binding partners including nucleolar and spindle-associated protein. C phase-selective microtubule binding of many of these proteins depended on activity of Aurora kinases as assayed by treatment with the drug VX680. Aurora-B binding partners switched dramatically between M phase to C phase, and we identified several novel C phase-selective Aurora-B binding partners including PRC1, KIF4, and anaphase-promoting complex/cyclosome. Our approach can be extended to other cellular compartments and cell states, and our data provide the first broad biochemical framework for understanding C phase. Concretely, we report a central role for Aurora-B in regulating the C phase cytoskeleton.


Asunto(s)
Citocinesis , Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacología , Citocinesis/efectos de los fármacos , Células HeLa , Humanos , Interfase/efectos de los fármacos , Marcaje Isotópico , Microtúbulos/efectos de los fármacos , Mitosis/efectos de los fármacos , Modelos Biológicos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos
17.
Comput Biol Med ; 150: 106193, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37859286

RESUMEN

Tracking biological objects such as cells or subcellular components imaged with time-lapse microscopy enables us to understand the molecular principles about the dynamics of cell behaviors. However, automatic object detection, segmentation and extracting trajectories remain as a rate-limiting step due to intrinsic challenges of video processing. This paper presents an adaptive tracking algorithm (Adtari) that automatically finds the optimum search radius and cell linkages to determine trajectories in consecutive frames. A critical assumption in most tracking studies is that displacement remains unchanged throughout the movie and cells in a few frames are usually analyzed to determine its magnitude. Tracking errors and inaccurate association of cells may occur if the user does not correctly evaluate the value or prior knowledge is not present on cell movement. The key novelty of our method is that minimum intercellular distance and maximum displacement of cells between frames are dynamically computed and used to determine the threshold distance. Since the space between cells is highly variable in a given frame, our software recursively alters the magnitude to determine all plausible matches in the trajectory analysis. Our method therefore eliminates a major preprocessing step where a constant distance was used to determine the neighbor cells in tracking methods. Cells having multiple overlaps and splitting events were further evaluated by using the shape attributes including perimeter, area, ellipticity and distance. The features were applied to determine the closest matches by minimizing the difference in their magnitudes. Finally, reporting section of our software were used to generate instant maps by overlaying cell features and trajectories. Adtari was validated by using videos with variable signal-to-noise, contrast ratio and cell density. We compared the adaptive tracking with constant distance and other methods to evaluate performance and its efficiency. Our algorithm yields reduced mismatch ratio, increased ratio of whole cell track, higher frame tracking efficiency and allows layer-by-layer assessment of motility to characterize single-cells. Adaptive tracking provides a reliable, accurate, time efficient and user-friendly open source software that is well suited for analysis of 2D fluorescence microscopy video datasets.


Asunto(s)
Algoritmos , Programas Informáticos , Rastreo Celular/métodos , Procesamiento de Imagen Asistido por Computador/métodos
18.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34874453

RESUMEN

Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitosis , Factores de Transcripción/metabolismo
19.
Nat Commun ; 13(1): 6742, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347873

RESUMEN

Cryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo. The M47 selectively enhanced the degradation rate of CRY1 by increasing its ubiquitination and resulted in increasing the circadian period length of U2OS Bmal1-dLuc cells. In addition, subcellular fractionation studies from mice liver indicated that M47 increased degradation of the CRY1 in the nucleus. Furthermore, M47-mediated CRY1 reduction enhanced oxaliplatin-induced apoptosis in Ras-transformed p53 null fibroblast cells. Systemic repetitive administration of M47 increased the median lifespan of p53-/- mice by ~25%. Collectively our data suggest that M47 is a promising molecule to treat forms of cancer depending on the p53 mutation.


Asunto(s)
Relojes Circadianos , Criptocromos , Animales , Ratones , Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Longevidad , Mamíferos/metabolismo , Ratones Noqueados , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética
20.
Nature ; 435(7046): 1257-61, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15988528

RESUMEN

SCF-type E3 ubiquitin ligases are multi-protein complexes required for polyubiquitination and subsequent degradation of target proteins by the 26S proteasome. Cullins, together with the RING-finger protein Rbx1, form the catalytic core of the ligase, and recruit the substrate-recognition module. Cycles of covalent modification of cullins by the ubiquitin-like molecule Nedd8 (neddylation) and removal of Nedd8 by the COP9 signalosome (deneddylation) positively regulate E3 ligase activity. Here we report the identification and analysis of a widely conserved protein that is required for cullin neddylation in the nematode Caenorhabditis elegans and the yeast Saccharomyces cerevisiae. C. elegans DCN-1 and S. cerevisiae Dcn1p (defective in cullin neddylation) are characterized by a novel UBA-like ubiquitin-binding domain and a DUF298 domain of unknown function. Consistent with their requirements for neddylation, DCN-1 and Dcn1p directly bind Nedd8 and physically associate with cullins in both species. Moreover, overexpression of Dcn1p in yeast results in the accumulation of Nedd8-modified cullin Cdc53p. Both in vivo and in vitro experiments indicate that Dcn1p does not inhibit deneddylation of Cdc53p by the COP9 signalosome, but greatly increases the kinetics of the neddylation reaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Proteínas Cullin/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Complejo del Señalosoma COP9 , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Catálisis , Proteínas Cullin/genética , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA