RESUMEN
Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest economic losses. Many limitations related to chemoprophylaxis and the acaricides control of transmitting vectors have led to the adoption of live attenuated vaccine immunisation against B. bovis as an alternative control strategy. However, whilst this strategy has been effective, several drawbacks related to its production have prompted research into alternative methodologies for producing vaccines. Classical approaches for developing anti-B. bovis vaccines are thus discussed in this review and are compared to a recent functional approach to highlight the latter's advantages when designing an effective synthetic vaccine targeting this parasite.
Asunto(s)
Babesia bovis , Babesia , Enfermedades de los Bovinos , Enfermedades por Picaduras de Garrapatas , Animales , Bovinos , Vacunas Atenuadas , Vacunas SintéticasRESUMEN
Plasmodium parasites' invasion of their target cells is a complex, multi-step process involving many protein-protein interactions. Little is known about how complex the interaction with target cells is in Plasmodium vivax and few surface molecules related to reticulocytes' adhesion have been described to date. Natural selection, functional and structural analysis were carried out on the previously described vaccine candidate P. vivax merozoite surface protein 10 (PvMSP10) for evaluating its role during initial contact with target cells. It has been shown here that the recombinant carboxyl terminal region (rPvMSP10-C) bound to adult human reticulocytes but not to normocytes, as validated by two different protein-cell interaction assays. Particularly interesting was the fact that two 20-residue-long regions (388DKEECRCRANYMPDDSVDYF407 and 415KDCSKENGNCDVNAECSIDK434) were able to inhibit rPvMSP10-C binding to reticulocytes and rosette formation using enriched target cells. These peptides were derived from PvMSP10 epidermal growth factor (EGF)-like domains (precisely, from a well-defined electrostatic zone) and consisted of regions having the potential of being B- or T-cell epitopes. These findings provide evidence, for the first time, about the fragments governing PvMSP10 binding to its target cells, thus highlighting the importance of studying them for inclusion in a P. vivax antimalarial vaccine.
Asunto(s)
Antígenos de Protozoos/metabolismo , Plasmodium vivax/metabolismo , Proteínas Protozoarias/metabolismo , Reticulocitos/parasitología , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Sitios de Unión/genética , Secuencia Conservada , Epítopos/química , Epítopos/genética , Epítopos/metabolismo , Genes Protozoarios , Humanos , Técnicas In Vitro , Malaria Vivax/sangre , Malaria Vivax/parasitología , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Plasmodium vivax/genética , Plasmodium vivax/patogenicidad , Dominios Proteicos/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reticulocitos/metabolismo , Electricidad EstáticaRESUMEN
Apical membrane antigen 1 is a microneme protein which plays an indispensable role during Apicomplexa parasite invasion. The detailed mechanism of AMA-1 molecular interaction with its receptor on bovine erythrocytes has not been completely defined in Babesia bovis. This study was focused on identifying the minimum B. bovis AMA-1-derived regions governing specific and high-affinity binding to its target cells. Different approaches were used for detecting ama-1 locus genetic variability and natural selection signatures. The binding properties of twelve highly conserved 20-residue-long peptides were evaluated using a sensitive and specific binding assay based on radio-iodination. B. bovis AMA-1 ectodomain structure was modelled and refined using molecular modelling software. NetMHCIIpan software was used for calculating B- and T-cell epitopes. The B. bovis ama-1 gene had regions under functional constraint, having the highest negative selective pressure intensity in the Domain I encoding region. Interestingly, B. bovis AMA-1-DI (100YMQKFDIPRNHGSGIYVDLG119 and 120GYESVGSKSYRMPVGKCPVV139) and DII (302CPMHPVRDAIFGKWSGGSCV321)-derived peptides had high specificity interaction with erythrocytes and bound to a chymotrypsin and neuraminidase-treatment sensitive receptor. DI-derived peptides appear to be exposed on the protein's surface and contain predicted B- and T-cell epitopes. These findings provide data (for the first-time) concerning B. bovis AMA-1 functional subunits which are important for establishing receptor-ligand interactions which could be used in synthetic vaccine development.
Asunto(s)
Eritrocitos/metabolismo , Ligandos , Receptores de Superficie Celular/metabolismo , Animales , Bovinos , Eritrocitos/inmunología , Modelos Moleculares , Conformación Molecular , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/inmunología , Relación Estructura-ActividadRESUMEN
Understanding the life cycle of Plasmodium vivax is fundamental for developing strategies aimed at controlling and eliminating this parasitic species. Although advances in omic sciences and high-throughput techniques in recent years have enabled the identification and characterization of proteins which might be participating in P. vivax invasion of target cells, exclusive parasite tropism for invading reticulocytes has become the main obstacle in maintaining a continuous culture for this species. Such advance that would help in defining each parasite protein's function in the complex process of P. vivax invasion, in addition to evaluating new therapeutic agents, is still a dream. Advances related to maintenance, culture medium supplements and the use of different sources of reticulocytes and parasites (strains and isolates) have been made regarding the development of an in vitro culture for P. vivax; however, only some cultures having few replication cycles have been obtained to date, meaning that this parasite's maintenance goes beyond the technical components involved. Although it is still not yet clear which molecular mechanisms P. vivax prefers for invading young CD71+ reticulocytes [early maturation stages (I-II-III)], changes related to membrane proteins remodelling of such cells could form part of the explanation. The most relevant aspects regarding P. vivax in vitro culture and host cell characteristics have been analysed in this review to explain possible reasons why the species' continuous in vitro culture is so difficult to standardize. Some alternatives for P. vivax in vitro culture have also been described.
Asunto(s)
Técnicas Microbiológicas/métodos , Parasitología/métodos , Plasmodium vivax/crecimiento & desarrollo , Animales , Medios de Cultivo/química , Reticulocitos/parasitologíaRESUMEN
BACKGROUND: The Plasmodium vivax Duffy binding protein (PvDBP) has been the most studied ligand binding human reticulocytes to date. This molecule has a cysteine-rich domain in region II (RII) which has been used as control for evaluating the target cell binding activity of several parasite molecules. However, obtaining rPvDBP-RII in a soluble form using the Escherichia coli expression system usually requires laborious and time-consuming steps for recovering the molecule's structure and function, considering it is extracted from inclusion bodies. The present study describes an easy and fast method for expressing and obtaining several PvDBP fragments which should prove ideal for use in protein-cell interaction assays. RESULTS: Two PvDBP encoding regions (rii and riii/v) were cloned in pEXP5-CT vector and expressed in E. coli and extracted from the soluble fraction (rPvDBP-RIIS and rPvDBP-RIII/VS) using a simple freezing/thawing protocol. After the purification, dichroism analysis enabled verifying high rPvDBP-RIIS and rPvDBP-RIII/VS secondary structure α-helix content, which was lowered when molecules were extracted from inclusion bodies (rPvDBP-RIIIB and rPvDBP-RIII/VIB) using a denaturing step. Interestingly, rPvDBP-RIIS, but not rPvDBP-RIIIB, bound to human reticulocytes, while rPvDBP-RIII/VS and rPvDBP-RIII/VIB bound to such cells in a similar way to negative control (cells incubated without recombinant proteins). CONCLUSIONS: This research has shown for the first time how rPvDBP-RII can be expressed and obtained in soluble form using the E. coli system and avoiding the denaturation and refolding steps commonly used. The results highlight the usefulness of the rPvDBP-RIII/VS fragment as a non-binding control for protein-cell target interaction assays. The soluble extraction protocol described is a good alternative to obtain fully functional P. vivax proteins in a fast and easy way, which will surely prove useful to laboratories working in studying this parasite's biology.
Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Protozoos/aislamiento & purificación , Perfilación de la Expresión Génica/métodos , Parasitología/métodos , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/aislamiento & purificación , Reticulocitos/metabolismoRESUMEN
BACKGROUND: Fasciolosis remains a significant food-borne trematode disease causing high morbidity around the world and affecting grazing animals and humans. A deeper understanding concerning the molecular mechanisms by which Fasciola hepatica infection occurs, as well as the molecular basis involved in acquiring protection is extremely important when designing and selecting new vaccine candidates. The present study provides a first report of microarray-based technology for describing changes in the splenic gene expression profile for mice immunised with a highly effective, protection-inducing, multi-epitope, subunit-based, chemically-synthesised vaccine candidate against F. hepatica. METHODS: The mice were immunised with synthetic peptides containing B- and T-cell epitopes, which are derived from F. hepatica cathepsin B and amoebapore proteins, as novel vaccine candidates against F. hepatica formulated in an adjuvant adaptation vaccination system; they were experimentally challenged with F. hepatica metacercariae. Spleen RNA from mice immunised with the highest protection-inducing synthetic peptides was isolated, amplified and labelled using Affymetrix standardised protocols. Data was then background corrected, normalised and the expression signal was calculated. The Ingenuity Pathway Analysis tool was then used for analysing differentially expressed gene identifiers for annotating bio-functions and constructing and visualising molecular interaction networks. RESULTS: Mice immunised with a combination of three peptides containing T-cell epitopes induced high protection against experimental challenge according to survival rates and hepatic damage scores. It also induced differential expression of 820 genes, 168 genes being up-regulated and 652 genes being down-regulated, p value <0.05, fold change ranging from -2.944 to 7.632. A functional study of these genes revealed changes in the pathways related to nitric oxide and reactive oxygen species production, Interleukin-12 signalling and production in macrophages and Interleukin-8 signalling with up-regulation of S100 calcium-binding protein A8, Matrix metallopeptidase 9 and CXC chemokine receptor 2 genes. CONCLUSION: The data obtained in the present study provided us with a more comprehensive overview concerning the possible molecular pathways implied in inducing protection against F. hepatica in a murine model, which could be useful for evaluating future vaccine candidates.
Asunto(s)
Fasciola hepatica/inmunología , Fascioliasis/prevención & control , Expresión Génica/efectos de los fármacos , Vacunas Antiprotozoos/farmacología , Bazo/efectos de los fármacos , Animales , Anticuerpos Antihelmínticos/inmunología , Calgranulina A/efectos de los fármacos , Calgranulina A/genética , Epítopos/inmunología , Femenino , Perfilación de la Expresión Génica , Interleucina-12/genética , Interleucina-8/efectos de los fármacos , Interleucina-8/genética , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/genética , Ratones , Péptidos/inmunología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores de Interleucina-8B/efectos de los fármacos , Receptores de Interleucina-8B/genética , Bazo/metabolismo , Regulación hacia Arriba , VacunaciónRESUMEN
BACKGROUND: Analysing human papillomavirus (HPV) viral load is important in determining the risk of developing cervical cancer (CC); most knowledge to date regarding HPV viral load and cervical lesions has been related to HPV-16. This study evaluated the association between the viral load of the six most prevalent high-risk viral types in Colombia and cervical intraepithelial neoplasia (CIN) frequency. METHODS: 114 women without CIN and 59 women having CIN confirmed by colposcopy, all of them positive by conventional PCR for HPV infection in the initial screening, were included in the study. Samples were tested for six high-risk HPV types to determine viral copy number by real-time PCR. Crude and adjusted odds ratios (ORa) were estimated for evaluating the association between each viral type's DNA load and the risk of cervical lesions occurring. RESULTS: The highest viral loads were identified for HPV-33 in CIN patients and for HPV-31 in patients without lesions (9.33 HPV copies, 2.95 interquartile range (IQR); 9.41 HPV copies, 2.58 IQR). Lesions were more frequent in HPV-16 patients having a low viral load (3.53 ORa, 1.16-10.74 95%CI) compared to those having high HPV-16 load (2.62 ORa, 1.08-6.35 95%CI). High viral load in HPV-31 patients was associated with lower CIN frequency (0.34 ORa, 0.15-0.78 95%CI). CONCLUSIONS: An association between HPV DNA load and CIN frequency was seen to be type-specific and may have depended on the duration of infection. This analysis has provided information for understanding the effect of HPV DNA load on cervical lesion development.
Asunto(s)
Alphapapillomavirus/genética , Cuello del Útero/patología , Cuello del Útero/virología , ADN Viral , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/etiología , Neoplasias del Cuello Uterino/patología , Carga Viral , Adulto , Alphapapillomavirus/clasificación , Biopsia , Colombia/epidemiología , Femenino , Humanos , Persona de Mediana Edad , Oportunidad Relativa , Factores de Riesgo , Neoplasias del Cuello Uterino/epidemiología , Adulto Joven , Displasia del Cuello del Útero/epidemiología , Displasia del Cuello del Útero/etiología , Displasia del Cuello del Útero/patologíaRESUMEN
BACKGROUND: The design of new healthcare schemes which involve using molecular HPV screening means that both persistence and clearance data regarding the most prevalent types of HR-HPV occurring in cities in Colombia must be ascertained. METHODS: This study involved 219 HPV positive women in all of whom 6 types of HR-HPV had been molecularly identified and quantified; they were followed-up for 2 years. The Kaplan-Meier survival function was used for calculating the time taken for the clearance of each type of HPV. The role of a group of independent variables concerning the time taken until clearance was evaluated using a Cox proportional-hazards regression model or parametric (log-logistic) methods when necessary. Regarding viral load, the Wilcoxon rank-sum test was used for measuring the difference of medians for viral load for each type, according to the state of infection (cleared or persistent). The Kruskal-Wallis test was used for evaluating the change in the women's colposcopy findings at the start of follow-up and at the end of it (whether due to clearance or the end of the follow-up period). RESULTS: It was found that HPV-18 and HPV-31 types had the lowest probability of becoming cleared (1.76 and 2.75 per 100 patients/month rate, respectively). Women from Colombian cities other than Bogotá had a greater probability of being cleared if they had HPV-16 (HR 2.58: 1.51-4.4 95% CI) or HPV-58 (1.79 time ratio: 1.33-2.39 95% CI) infection. Regarding viral load, HPV-45-infected women having 1 × 106 to 9.99 × 109 viral copies had better clearance compared to those having greater viral loads (1.61 time ratio: 1.01-2.57 95% CI). Lower HPV-31 viral load values were associated with this type's persistence and changes in colposcopy findings for HPV-16 gave the worst prognosis in women having low absolute load values. CONCLUSIONS: HPV infection clearance in this study was related to factors such as infection type, viral load and the characteristics of the cities from which the women came. Low viral load values would indicate viral persistence and a worse prognosis regarding a change in colposcopy findings.
Asunto(s)
Papillomaviridae , Infecciones por Papillomavirus/virología , Adulto , Anciano , Estudios de Cohortes , Colombia , Colposcopía , Femenino , Estudios de Seguimiento , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Embarazo , Prevalencia , Modelos de Riesgos Proporcionales , Factores de Riesgo , Carga ViralRESUMEN
Reticulocytes represent the main invasion target for Plasmodium vivax, the second most prevalent parasite species around the world causing malaria in humans. In spite of these cells' importance in research into malaria, biological knowledge related to the nature of the host has been limited, given the technical difficulties present in working with them in the laboratory. Poor reticulocyte recovery from total blood, by different techniques, has hampered continuous in vitro P. vivax cultures being developed, thereby delaying basic investigation in this parasite species. Intense research during the last few years has led to advances being made in developing methodologies orientated towards obtaining enriched reticulocytes from differing sources, thereby providing invaluable information for developing new strategies aimed at preventing infection caused by malaria. This review describes the most recent studies related to obtaining reticulocytes and discusses approaches which could contribute towards knowledge regarding molecular interactions between target cell proteins and their main infective agent, P. vivax.
Asunto(s)
Malaria Vivax/parasitología , Plasmodium vivax/fisiología , Reticulocitos/parasitología , Animales , HumanosRESUMEN
B. bovis invasion of bovine erythrocytes requires tight junction formation involving AMA-1/RON2 complex interaction. RON2 has been considered a vaccine candidate since antibodies targeting the protein can inhibit parasite invasion of target cells; however, the mechanism controlling B. bovis RON2 interaction with red blood cells is not yet fully understood. This study was thus aimed at identifying B. bovis RON2 protein regions associated with interaction with bovine erythrocytes. Natural selection analysis of the ron2 gene identified predominantly negative selection signals in the C-terminal region. Interestingly, protein-cell and competition assays highlighted the RON2-C region's role in peptide 42918-mediated erythrocyte binding, probably to a sialoglycoprotein receptor. This peptide (1218SFIMVKPPALHCVLKPVETL1237) lies within an intrinsically disordered region of the RON2 secondary structure flanked by two helical residues. The study provides, for the first time, valuable insights into RON2's role in interaction with its target cells. Future studies are required for studying the peptide's potential as an anti-B. bovis vaccine component.
Asunto(s)
Babesia bovis , Vacunas , Animales , Bovinos , Epítopos , Proteínas Protozoarias/metabolismo , Péptidos , Eritrocitos/parasitologíaRESUMEN
PURPOSE: Multidisciplinary molecular tumor boards (MTBs) decode complex genomic data into clinical recommendations. Although MTBs are well-established in the oncology practice in developed countries, this strategy needs to be better explored in developing countries. Herein, we describe the possible benefits and limitations of the first MTB established in Colombia. METHODS: Demographic, clinical, and genomic information was collected between August 2020 and November 2021. By mid-2020, an MTB strategy was created to discuss clinical cases with one or more genomic alterations identified by next-generation sequencing using an open-access virtual platform. We characterized the patient population as benefiting from the recommended treatment option. We assessed the benefits and access to available targeted therapies that have the potential to change clinical management by making recommendations to treating oncologists on the basis of genomic profiling. However, we did not assess the treatment oncologists' compliance with MTB recommendations because they were not intended to replace clinical judgment/standard of care. RESULTS: A total of 146 patients were included in the discussions of the MTB. The median age was 59 years, and 59.6% were women. Genomic results prompting a change in therapeutic decisions were obtained in 53.1% of patients (95% CI, 44.9 to 61.3). The most prevalent malignancy was non-small-cell lung cancer (51%). Other malignancies represented 60%, 50%, and 30% of patients with soft-tissue sarcomas, brain tumors, and breast cancer, respectively. CONCLUSION: Using an open-access virtual platform, MTBs were feasible in low- and middle-income countries on the basis of the capability to provide the benefits and access to available targeted therapies that are not standard of care. Furthermore, MTB recommendations were made available to the treating oncologist in different locations across Colombia, providing the option to modify clinical management in most of these patients.
Asunto(s)
Hispánicos o Latinos , Neoplasias , Evaluación de Resultado en la Atención de Salud , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Mama , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Oncología Médica , Sarcoma , Neoplasias Encefálicas , Neoplasias de los Tejidos Blandos , Neoplasias/terapia , Resultado del TratamientoRESUMEN
BACKGROUND: Plasmodium vivax continues to be the most widely distributed malarial parasite species in tropical and sub-tropical areas, causing high morbidity indices around the world. Better understanding of the proteins used by the parasite during the invasion of red blood cells is required to obtain an effective vaccine against this disease. This study describes characterizing the P. vivax asparagine-rich protein (PvARP) and examines its antigenicity in natural infection. METHODS: The target gene in the study was selected according to a previous in silico analysis using profile hidden Markov models which identified P. vivax proteins that play a possible role in invasion. Transcription of the arp gene in the P. vivax VCG-1 strain was here evaluated by RT-PCR. Specific human antibodies against PvARP were used to confirm protein expression by Western blot as well as its subcellular localization by immunofluorescence. Recognition of recombinant PvARP by sera from P. vivax-infected individuals was evaluated by ELISA. RESULTS: VCG-1 strain PvARP is a 281-residue-long molecule, which is encoded by a single exon and has an N-terminal secretion signal, as well as a tandem repeat region. This protein is expressed in mature schizonts and is located on the surface of merozoites, having an apparent accumulation towards their apical pole. Sera from P. vivax-infected patients recognized the recombinant, thereby suggesting that this protein is targeted by the immune response during infection. CONCLUSIONS: This study showed the characterization of PvARP and its antigenicity. Further assays orientated towards evaluating this antigen's functional importance during parasite invasion are being carried out.
Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Anticuerpos Antiprotozoarios/sangre , Western Blotting , ADN Protozoario/química , ADN Protozoario/genética , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Transcripción GenéticaRESUMEN
NRAMP1 and VDR gene polymorphisms have been variably associated with susceptibility to tuberculosis (TB) amongst populations having different genetic background. NRAMP1 and VDR gene variants' association with susceptibility to active infection by Mycobacterium tuberculosis (Mtb) was analyzed in the Warao Amerindian population, an ethnic population from Venezuela's Orinoco delta region. Genomic DNA was extracted from individuals with and without TB to evaluate genetic polymorphism by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Four NRAMP1 gene polymorphisms were analyzed: D543N (rs17235409), 3' UTR (rs17235416), INT4 (rs3731865), and 274C/T (rs2276631), and one VDR gene polymorphism: FokI (rs2228570). The results showed that the genotypes D543N-A/A, 3'UTR-TGTG+/+, INT4-C/C, and 274C/T-T/T of known polymorphism in the NRAMP1 gene, as well as the genotypes FokI-F/f and FokI-f/f in the VDR gene were most often found in indigenous Warao with active TB. Binomial logistic regression was used for evaluating associations between polymorphisms and risk of contracting TB, an association between NRAMP1-D543N-A/A genotype distribution and TB susceptibility was found in Warao Amerindians. Regarding Venezuelan populations having different genetic backgrounds; statistically significant TB associations concerning NRAMP1-D543N-A/A, INT4-C/C and 3'UTR-TGTG+/+ variant genotype distributions in Warao Amerindians (indigenous) compared to Creole (admixed non-indigenous population) individuals were found. In conclusion, the results thus indicated that the association between NRAMP1-D543N-A/A genotype and TB in Warao Amerindians could support such allele's role in host susceptibility to Mtb infection.
Asunto(s)
Proteínas de Transporte de Catión , Tuberculosis , Humanos , Regiones no Traducidas 3'/genética , Venezuela , Predisposición Genética a la Enfermedad , Proteínas de Transporte de Catión/genética , Tuberculosis/genética , Genotipo , Estudios de Casos y ControlesRESUMEN
Background: DICER1 alterations are associated with intracranial tumors in the pediatric population, including pineoblastoma, pituitary blastoma, and the recently described "primary DICER1-associated CNS sarcoma" (DCS). DCS is an extremely aggressive tumor with a distinct methylation signature and a high frequency of co-occurring mutations. However, little is known about its treatment approach and the genomic changes occurring after exposure to chemoradiotherapy. Methods: We collected clinical, histological, and molecular data from eight young adults with DCS. Genomic analysis was performed by Next-generation Sequencing (NGS). Subsequently, an additional germline variants analysis was completed. In addition, an NGS analysis on post-progression tumor tissue or liquid biopsy was performed when available. Multiple clinicopathological characteristics, treatment variables, and survival outcomes were assessed. Results: Median age was 20 years. Most lesions were supratentorial. Histology was classified as fusiform cell sarcomas (50%), undifferentiated (unclassified) sarcoma (37.5%), and chondrosarcoma (12.5%). Germline pathogenic DICER1 variants were present in two patients, 75% of cases had more than one somatic alteration in DICER1, and the most frequent commutation was TP53. Seven patients were treated with surgery, Ifosfamide, Cisplatin, and Etoposide (ICE) chemotherapy and radiotherapy. The objective response was 75%, and the median time to progression (TTP) was 14.5 months. At progression, the most common mutations were in KRAS and NF1. Overall survival was 30.8 months. Conclusions: DCS is an aggressive tumor with limited therapeutic options that requires a comprehensive diagnostic approach, including molecular characterization. Most cases had mutations in TP53, NF1, and PTEN, and most alterations at progression were related to MAPK, RAS and PI3K signaling pathways.
RESUMEN
BACKGROUND: Epidermal growth factor receptor (EGFR) mutations (EGFRm) represent one of the most common genomic alterations identified among patients with non-small cell lung cancer (NSCLC). Several targeted agents for patients with EGFRm have been proven safe and effective, including the third-generation tyrosine kinase inhibitor (TKI) osimertinib. Nonetheless, some patients will present with or develop EGFR-TKI resistance mechanisms. OBJECTIVE: We characterized the genomic landscape of primary resistance to osimertinib among Hispanic patients with EGFR-mutant NSCLC. METHODS: An observational longitudinal cohort study was conducted with two groups of patients, those with intrinsic resistance (cohort A) and those with long-term survival (cohort B). All patients were treated and followed between January 2018 and May 2022. All patients were assessed for Programmed Cell Death Ligand 1 (PD-L1) expression and Bcl-2-like protein 11 (BIM)/AXL mRNA expression before starting TKI. After 8 weeks of treatment, a liquid biopsy was performed to determine the presence of circulating free DNA (cfDNA), and next-generation sequencing (NGS) was used to identify mutations at the time of progression. In both cohorts, overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) were evaluated. RESULTS: We found a homogeneous distribution of EGFR-sensitizing mutations in both cohorts. For cohort A, exon 21 mutations were more common than exon 19 deletions (ex19dels) for cohort B (P = 0.0001). The reported ORR for osimertinib was 6.3% and 100% for cohorts A and B, respectively (P = 0.0001). PFS was significantly higher in cohort B (27.4 months vs. 3.1 months; P = 0.0001) and ex19del patients versus L858R (24.5 months, 95% confidence interval [CI] 18.2-NR), vs. 7.6 months, 95% CI 4.8-21.1; P = 0.001). OS was considerably lower for cohort A (20.1 months vs. 36.0 months; P = 0.0001) and was better for patients with ex19del, no brain metastasis, and low tumor mutation burden. At the time of progression, more mutations were found in cohort A, identifying off-target alterations more frequently, including TP53, RAS, and RB1. CONCLUSION: EGFR-independent alterations are common among patients with primary resistance to osimertinib and significantly impact PFS and OS. Our results suggest that among Hispanic patients, other variables associated with intrinsic resistance include the number of commutations, high levels AXL mRNA, and low levels of BIM mRNA, T790M de novo, EGFR p.L858R presence, and a high tumoral mutational burden.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Estudios Longitudinales , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Estudios de Cohortes , Genómica , Hispánicos o LatinosRESUMEN
Image segmentation and computer vision are becoming more important in computer-aided design. A computer algorithm extracts image borders, colours, and textures. It also depletes resources. Technical knowledge is required to extract information about distinctive features. There is currently no medical picture segmentation or recognition software available. The proposed model has 13 layers and uses dilated convolution and max-pooling to extract small features. Ghost model deletes the duplicated features, makes the process easier, and reduces the complexity. The Convolution Neural Network (CNN) generates a feature vector map and improves the accuracy of area or bounding box proposals. Restructuring is required for healing. As a result, convolutional neural networks segment medical images. It is possible to acquire the beginning region of a segmented medical image. The proposed model gives better results as compared to the traditional models, it gives an accuracy of 96.05, Precision 98.2, and recall 95.78. The first findings are improved by thickening and categorising the image's pixels. Morphological techniques may be used to segment medical images. Experiments demonstrate that the recommended segmentation strategy is effective. This study rethinks medical image segmentation methods.
Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Programas InformáticosRESUMEN
Merozoite surface antigen-1 is a glycoprotein expressed by Babesia bovis and is considered a vaccine candidate given that antibodies against it are able to partially block in vitro invasion of bovine erythrocytes. Despite this, no study to date has confirmed the target cell binding properties of the full MSA-1 or its fragments. This research has thus been focused on identifying protein regions playing a role in erythrocyte attachment, based on genetic diversity and natural selection analysis. Two regions under functional constraint (nucleotides 134-428 and 464-629) having a preponderance of negatively-selected signals were identified in silico. Three non-overlapping peptides derived from functionally constraint regions (42422 (39PEGSFYDDMSKFYGAVGSFD58), 42424 (91NALIKNNPMIRPDLFNATIV110) and 42426 (150TDIVEEDREKAVEYFKKHVY169)) were able to specifically bind to a sialoglycoprotein located on the bovine erythrocyte surface as confirmed by sensitive and specific peptide-cell interaction competition assays using both enzymatically treated and untreated red blood cells. Interestingly, it was predicted that peptides 42422 and 42426 have a helical structure and conserved motifs in all strain/isolates. These findings provide evidence, for the first time, related to B. bovis MSA-1 short regions used by the parasite in erythrocyte binding which could be predicted using natural selection analysis. Future work focused on evaluating these peptides' antigenic ability during natural infection, and their ability to induce protection in immunisation assays are needed to confirm their usefulness as synthetic vaccine candidates.
Asunto(s)
Babesia bovis , Babesiosis , Enfermedades de los Bovinos , Bovinos , Animales , Babesia bovis/genética , Proteína 1 de Superficie de Merozoito/genética , Antígenos de Protozoos , Eritrocitos/parasitología , Enfermedades de los Bovinos/parasitología , Babesiosis/parasitología , Proteínas ProtozoariasRESUMEN
BACKGROUND: Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1) and examine its antigenicity in natural P. vivax infections. METHODS: The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP) according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs) by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. RESULTS: In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. CONCLUSIONS: This study shows the identification and characterization of the P. vivax rhoptry neck protein 1 in the VCG-1 strain. Taking into account that PvRON1 shares several important characteristics with other Plasmodium antigens that play a functional role during RBC invasion and, as shown here, it is antigenic, it could be considered as a good vaccine candidate. Further studies aimed at assessing its immunogenicity and protection-inducing ability in the Aotus monkey model are thus recommended.
Asunto(s)
Antígenos de Protozoos/análisis , Antígenos de Protozoos/genética , Plasmodium vivax/química , Plasmodium vivax/genética , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Humanos , Microscopía Fluorescente , Orgánulos/química , Orgánulos/genética , Plasmodium falciparum/genética , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de SecuenciaRESUMEN
HLA class II (HLA-II) genes' polymorphism influences the immune response to Chlamydia trachomatis (Ct), it is considered a sexually transmitted infection. However, associations between HLA-II alleles and Ct-infection have been little explored in humans; this study was thus aimed at determining HLA-DRB1-DQB1 alleles/haplotypes' effect on Ct-infection outcome in a cohort of Colombian women. Cervical sample DNA was used as template for detecting Ct by PCR and typing HLA-DRB1-DQB1 alleles/haplotypes by Illumina MiSeq sequencing. Survival models were adjusted for identifying the alleles/haplotypes' effect on Ct-outcome; bioinformatics tools were used for predicting secreted bacterial protein T- and B-cell epitopes. Sixteen HLA-DRB1 alleles having a significant effect on Ct-outcome were identified in the 262 women analysed. DRB1*08:02:01G and DRB1*12:01:01G were related to infection-promoting events. Only the DQB1*05:03:01G allele related to clearance/persistence events was found for HLA-DQB1. HLA-DRB1 allele homozygous women were associated with events having a lower probability of clearance and/or early occurrence of persistence. Twenty-seven peptides predicted in silico were associated with protective immunity against Ct; outer membrane and polymorphic membrane protein-derived peptides had regions having dual potential for being T- or B-cell epitopes. This article describes HLA-DRB1-DQB1 alleles/haplotypes related to Ct-infection resolution and the peptides predicted in silico which might probably be involved in host immune response. The data provides base information for developing future studies leading to the development of effective prevention measures against Ct-infection.
Asunto(s)
Alelos , Infecciones por Chlamydia/etiología , Chlamydia trachomatis , Predisposición Genética a la Enfermedad , Cadenas beta de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Péptidos/genética , Adulto , Secuencia de Aminoácidos , Mapeo Epitopo , Epítopos , Femenino , Frecuencia de los Genes , Cadenas beta de HLA-DQ/química , Cadenas HLA-DRB1/química , Haplotipos , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Péptidos/química , Adulto JovenRESUMEN
BACKGROUND: There has been a long-standing debate over the taxonomic status of Rhipicephalus sanguineus sensu lato. Different studies worldwide have reported the occurrence of different well-defined lineages, in addition to Rhipicephalus sanguineus sensu stricto. To date, there are very few studies examining the diverse aspects of this tick in Colombia. We assessed the population structure and genetic diversity of R. sanguineus s.l. in eight departmental regions across Colombia. METHODS: A total of 170 ticks were collected from dogs in different departments of Colombia. All specimens were morphologically compatible with R. sanguineus s.l. and subjected to genetic analysis. DNA sequences were obtained for the 12S rDNA, cytochrome oxidase I (COI) and internal transcribed spacer 2 (ITS2) markers. A concatenated set of all mitochondrial markers was also constructed. Next, maximum likelihood phylogenetic trees were constructed using the sequences generated herein and sequences available in GenBank. Finally, we assessed different summary statistics and analysed population structure and divergence with Fst and Dxy and demographic changes with Tajima's D and Fu and Li's statistical tests. RESULTS: Analysis of the 12S rDNA and COI revealed that all R. sanguineus s.l. specimens collected across different regions of Colombia clustered within the tropical lineage. Micro-geographical analyses showed that the tick population from Amazonas formed a distinct cluster separated from the other sequences, with moderate Fst and Dxy values. However, no signs of a robust population structure were found within the country. The results of Fu's FS tests, together with the haplotype networks and diversity values, signal a possible population expansion of this tick species in Colombia. CONCLUSIONS: Evidence provided herein supports the tropical lineage as the main circulating lineage in Colombia, exhibiting a general lack of genetic structure except for the Amazonas region.