RESUMEN
Bacterial communities in drinking water provide a gauge to measure quality and confer insights into public health. In contrast to urban systems, water treatment in rural areas is not adequately monitored and could become a health risk. We performed 16S rRNA amplicon sequencing to analyze the microbiome present in the water treatment plants at two rural communities, one city, and the downstream water for human consumption in schools and reservoirs in the Andean highlands of Ecuador. We tested the effect of water treatment on the diversity and composition of bacterial communities. A set of physicochemical variables in the sampled water was evaluated and correlated with the structure of the observed bacterial communities. Predominant bacteria in the analyzed communities belonged to Proteobacteria and Actinobacteria. The Sphingobium genus, a chlorine resistance group, was particularly abundant. Of health concern in drinking water reservoirs were Fusobacteriaceae, Lachnospiraceae, and Ruminococcaceae; these families are associated with human and poultry fecal contamination. We propose the latter families as relevant biomarkers for establishing local standards for the monitoring of potable water systems in highlands of Ecuador. Our assessment of bacterial community composition in water systems in the Ecuadorian highlands provides a technical background to inform management decisions.
Asunto(s)
Agua Potable , Humanos , Ecuador , ARN Ribosómico 16S/genética , Bacterias , Proteobacteria/genética , Microbiología del AguaRESUMEN
BACKGROUND: In 2020, Ecuador had one of the highest death rates because of COVID-19. The role of clinical and biomolecular markers in COVID disease prognosis, is still not well supported by available data. In order for these markers to have practical application in clinical decision-making regarding patient treatment and prognosis, it is necessary to know an optimal cut-off point, taking into consideration ethnic differences and geographic conditions. AIM: To determine the value of clinical and biomolecular markers, to predict mortality of patients with severe COVID-19 living at high altitude. METHODS: In this study, receiver operating characteristic (ROC) curves, area under the curve (AUC) of ROC, sensitivity, specificity and likelihood ratios were calculated to determine levels of clinical and biomolecular markers that best differentiate survivors versus non-survivors in severe COVID subjects that live at a high altitude setting. RESULTS: Selected cut-off values for ferritin (≥ 1225 ng/dl, p = 0.026), IL-6 (≥ 11 pg/ml, p = 0.005) and NLR (≥ 22, p = 0.008) at 24 h, as well as PaFiO2 (≤ 164 mmHg, p = 0.015), NLR (≥ 16, p = p = 0.013) and SOFA (≥ 6, p = 0.031) at 72 h, appear to have good discriminating power to differentiate survivors versus non-survivors. Additionally, odds ratios for ferritin (OR = 3.38); IL-6 (OR = 17.07); PaFiO2 (OR = 4.61); NLR 24 h (OR = 4.95); NLR 72 h (OR = 4.46), and SOFA (OR = 3.77) indicate increased risk of mortality when cut-off points were taken into consideration. CONCLUSIONS: We proposed a straightforward and understandable method to identify dichotomized levels of clinical and biomolecular markers that can discriminate between survivors and non-survivors patients with severe COVID-19 living at high altitudes.
Asunto(s)
COVID-19 , Humanos , Curva ROC , Altitud , Interleucina-6 , Estudios Retrospectivos , Pronóstico , FerritinasRESUMEN
Background: Ecuador was harshly impacted by COVID-19, in the region was the epicenter of the pandemic with the highest mortality rates and with the lowest rates of processed samples. Real-time reverse transcription PCR assays are essential to identify and manage the SARS-CoV-2 outbreak. Because of the global emergency, in Ecuador several commercial kits were introduced for use without clinical validation. In this manner, having the need to perform an evaluation with clinical samples before use for population screening. Objective: This study aimed to evaluate the diagnostic performance of the nCoV-QS, nCoV-QM-N, nCoV-OM detection kits lately available in Ecuador, against the LightMix E/RdRp kit using nasopharyngeal swab (NPS) samples. Materials and methods: 198 nasopharyngeal samples were used (66 fresh NPS and 132 RNA stored samples). All samples were analyzed for SARS-CoV-2 with nCoV-QS, nCoV-QM-N, nCoV-OM detection kits and compared the concordance (Cohen's Kappa index, positive percentage agreement and negative percentage agreement) to LightMix E/RdRp as reference detection kit. Results: The 198 samples presented strong concordance (96% nCoV-QM-N, 100% nCoV-OM and 100% nCoV-QS). The individual performance of each gene showed that the nCoV-OM kit had a higher number of samples detected with the ORF3a (52.5%) and N (53.5%) genes. The combined genes demonstrated that ORF3a/N of nCoV-OM and nCoV-QS kits presented a higher percentage of detection with 52.5% and 48.5%, respectively. Finally, the detection rate and cycle threshold were not different between ORF3a, N, and E target genes. Conclusion: The nCoV-QS, nCoV-QM-N, and nCoV-OM Detection kits have comparable diagnostic performance to the emergency approved LightMix E/RdRp kit for SARS-CoV-2 detection in suspected COVID-19 patients.
RESUMEN
INTRODUCTION: Sepsis is a public health problem due to its high prevalence and mortality. Mean platelet volume (MPV), a biomarker reported in routine blood counts, has been investigated and shows promise for determining fatal outcomes in septic patients. OBJECTIVE: Evaluate whether the mean platelet volume (MPV) and mean platelet volume-to-platelet count (MPV/P) ratio are predictors of clinical severity and mortality in patients with sepsis. METHODS: A prospective population cohort of 163 patients aged 18-97 years was recruited at the Intensive Care Unit of Pablo Arturo Hospital, Quito, Ecuador from 2017-2019 and followed up for 28 days. Patients were diagnosed with sepsis based on SEPSIS-3 septic shock criteria; in which the MPV and the MPV/P ratio were measured on days 1, 2, and 3. Sequential organ failure assessment (SOFA) score and presence of septic shock assessed clinical severity. Mortality on day 28 was considered the fatal outcome. RESULTS: The average age of the patients was 61,15 years (SD 20,94) and female sex was predominant. MPV cutoff points at days 1, 2 and 3 were >9,45fL, >8,95fL and >8, 85fL; and (MPV/P) ratio >8, 18, >4, 12 y >3, 95, respectively. MPV at days 2 (9,85fL) and 3 (8,55fL) and (MPV/P) ratio at days 1 (4,42), 2 (4,21), and 3 (8,55), were predictors of clinical severity assessed by septic shock, which reached significance in the ROC curves. MPV and (MPV/P) ratio were also predictors of clinical severity determined by SOFA at days 1, 2, and 3, where higher values were observed in non-survivors reaching significance in all categories. MPV and MPV/P ratio at days 1, 2 and 3 were independent predictor factors of mortality using Cox proportional hazards model (HR 2,31; 95% CI 1,36-3,94), (HR 2,11; 95% CI 1,17-3,82), (HR 2,13; 95% CI 1,07-4,21) and (HR 2,38; 95% CI 1,38-4,12), (HR 2,15; 95% CI 1,14-4,06), (HR 4,43; 95% CI, 1,72-11,37) respectively. CONCLUSIONS: MPV and the MPV/P ratio are predictors of clinical severity and mortality in sepsis. The MPV and its coefficient are indicators of the biological behavior of platelets in sepsis. They should be considered as a cost-effective and rapidly available tool that guides the treatment.
Asunto(s)
Plaquetas/patología , Choque Séptico/mortalidad , Choque Séptico/patología , Anciano , Biomarcadores/metabolismo , Ecuador , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Volúmen Plaquetario Medio/métodos , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Recuento de Plaquetas/métodos , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Curva ROC , Choque Séptico/metabolismoRESUMEN
In December 2019, a novel coronavirus known as SARS-CoV-2 was first detected in Wuhan, China, causing outbreaks of the coronavirus disease COVID-19 that has now spread globally. For this reason, The World Health Organization (WHO) declared COVID-19 a public health emergency in March 2020. People living with pre-existing conditions such as obesity, cardiovascular diseases, type 2 diabetes (T2D), and chronic kidney and lung diseases, are prone to develop severe forms of disease with fatal outcomes. Metabolic diseases such as obesity and T2D alter the balance of innate and adaptive responses. Both diseases share common features characterized by augmented adiposity associated with a chronic systemic low-grade inflammation, senescence, immunoglobulin glycation, and abnormalities in the number and function of adaptive immune cells. In obese and T2D patients infected by SARS-CoV-2, where immune cells are already hampered, this response appears to be stronger. In this review, we describe the abnormalities of the immune system, and summarize clinical findings of COVID-19 patients with pre-existing conditions such as obesity and T2D as this group is at greater risk of suffering severe and fatal clinical outcomes.
RESUMEN
Mesenchymal stromal cells (MSCs) are a promising treatment modality for a variety of diseases. Strategies to investigate the fate of MSCs in vivo are important to unravel their therapeutic mechanisms. However, currently available techniques are hampered by their low sensitivity. We therefore aimed to optimize in vivo bioluminescence imaging of MSCs. We compared MSCs transduced with firefly luciferase (Fluc) and transmembrane-bound Gaussia luciferase driven by the human cytomegalovirus, spleen focus-forming virus (SFFV), and elongation factor 1-α (EF1α) promoters. Although cytomegalovirus-transmembrane-bound Gaussia luciferase-transduced MSCs showed the highest light intensity in vitro, the signal was almost undetectable in vivo. Spleen focus-forming virus-Fluc-transduced MSCs revealed a bright signal in vivo, but transgene expression was silenced upon in vitro stimulation with interferon (IFN)-γ. Therefore, the SFFV promoter was replaced by the EF1α promoter. Light emission of Fluc under the control of EF1α was similar to SFFV-Fluc. Although EF1α-Fluc light emission was decreased tenfold in the presence of IFN-γ when compared with unstimulated MSCs, the bioluminescent signal could still be detected and was clearly distinguishable from untransduced MSCs. Furthermore, stimulation of MSCs with tumor necrosis factor-α hardly affected transgene expression in EF1α-Fluc-transduced MSCs. Thus, the use of the EF1α promoter partially overcomes silencing and allows in vivo bioluminescence imaging of IFN-γ-stimulated MSCs.