Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 17: 227, 2016 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-26968660

RESUMEN

BACKGROUND: Chlamydomonas reinhardtii is the model organism that serves as a reference for studies in algal genomics and physiology. It is of special interest in the study of the evolution of regulatory pathways from algae to higher plants. Additionally, it has recently gained attention as a potential source for bio-fuel and bio-hydrogen production. The genome of Chlamydomonas is available, facilitating the analysis of its transcriptome by RNA-seq data. This has produced a massive amount of data that remains fragmented making necessary the application of integrative approaches based on molecular systems biology. RESULTS: We constructed a gene co-expression network based on RNA-seq data and developed a web-based tool, ChlamyNET, for the exploration of the Chlamydomonas transcriptome. ChlamyNET exhibits a scale-free and small world topology. Applying clustering techniques, we identified nine gene clusters that capture the structure of the transcriptome under the analyzed conditions. One of the most central clusters was shown to be involved in carbon/nitrogen metabolism and signalling, whereas one of the most peripheral clusters was involved in DNA replication and cell cycle regulation. The transcription factors and regulators in the Chlamydomonas genome have been identified in ChlamyNET. The biological processes potentially regulated by them as well as their putative transcription factor binding sites were determined. The putative light regulated transcription factors and regulators in the Chlamydomonas genome were analyzed in order to provide a case study on the use of ChlamyNET. Finally, we used an independent data set to cross-validate the predictive power of ChlamyNET. CONCLUSIONS: The topological properties of ChlamyNET suggest that the Chlamydomonas transcriptome posseses important characteristics related to error tolerance, vulnerability and information propagation. The central part of ChlamyNET constitutes the core of the transcriptome where most authoritative hub genes are located interconnecting key biological processes such as light response with carbon and nitrogen metabolism. Our study reveals that key elements in the regulation of carbon and nitrogen metabolism, light response and cell cycle identified in higher plants were already established in Chlamydomonas. These conserved elements are not only limited to transcription factors, regulators and their targets, but also include the cis-regulatory elements recognized by them.


Asunto(s)
Chlamydomonas reinhardtii/genética , Redes Reguladoras de Genes , Transcriptoma , Análisis por Conglomerados , ADN de Algas/genética , Familia de Multigenes , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN , Programas Informáticos , Factores de Transcripción/genética
2.
Brief Bioinform ; 11(3): 313-22, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20038568

RESUMEN

P systems or Membrane Systems provide a high-level computational modelling framework that combines the structure and dynamic aspects of biological systems in a relevant and understandable way. They are inherently parallel and non-deterministic computing devices. In this article, we discuss the motivation, design principles and key of the implementation of a simulator for the class of recognizer P systems with active membranes running on a (GPU). We compare our parallel simulator for GPUs to the simulator developed for a single central processing unit (CPU), showing that GPUs are better suited than CPUs to simulate P systems due to their highly parallel nature.


Asunto(s)
Algoritmos , Biomimética/métodos , Simulación por Computador , Modelos Biológicos , Lenguajes de Programación , Programas Informáticos , Biología/métodos , Diseño de Software , Integración de Sistemas
3.
Int J Neural Syst ; 31(1): 2050071, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33200621

RESUMEN

Dendrite P systems (DeP systems) are a recently introduced neural-like model of computation. They provide an alternative to the more classical spiking neural (SN) P systems. In this paper, we present the first software simulator for DeP systems, and we investigate the key features of the representation of the syntax and semantics of such systems. First, the conceptual design of a simulation algorithm is discussed. This is helpful in order to shade a light on the differences with simulators for SN P systems, and also to identify potential parallelizable parts. Second, a novel simulator implemented within the P-Lingua simulation framework is presented. Moreover, MeCoSim, a GUI tool for abstract representation of problems based on P system models has been extended to support this model. An experimental validation of this simulator is also covered.


Asunto(s)
Redes Neurales de la Computación , Neuronas , Algoritmos , Simulación por Computador , Dendritas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA