Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Geophys Res Lett ; 47(15): e2020GL088755, 2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32999518

RESUMEN

Submicrosecond (0.476 µs per frame with an exposure time of 160 ns) high-resolution (0.38 nm) time-resolved spectra of laboratory-produced lightning-like electrical discharges have been recorded for the first time within the visible spectral range (645-665 nm). The spectra were recorded with the GrAnada LIghtning Ultrafast Spectrograph (GALIUS), a high-speed imaging spectrograph recently developed for lightning research in the IAA-CSIC. Unprecedented spectral time dynamics are explored for meter long laboratory electrical discharges produced with a 2.0 MV Marx generator. The maximum electron density and gas temperature measured in a timescale of ≤0.50 µs (160 ns) were, respectively, ≃1018 cm-3 and ≃32,000 K. Overpressure in the lightning-like plasma channel, black-body dynamics, and self-absorption in spectral lines were investigated.

2.
J Geophys Res Atmos ; 127(24): e2022JD037535, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-37033368

RESUMEN

We present nighttime worldwide distributions of key features of Blue LUminous Events (BLUEs) detected by the Modular Multispectral Imaging Array of the Atmosphere-Space Interaction Monitor. Around 10% of all detected BLUEs exhibit an impulsive single pulse shape. The rest of BLUEs are unclear (impulsive or not) single, multiple or with ambiguous pulse shapes. BLUEs exhibit two distinct populations with peak power density <25 µWm-2 (common) and ≥25 µWm-2 (rare) with different rise times and durations. The altitude (and depth below cloud tops) zonal distribution of impulsive single pulse BLUEs indicate that they are commonly present between cloud tops and a depth of ≤4 km in the tropics and ≤1 km in mid and higher latitudes. Impulsive single pulse BLUEs in the tropics are the longest (up to ∼4 km height) and have the largest number of streamers (up to ∼3 × 109). Additionally, the analysis of BLUEs has turned out to be particularly complex due to the abundance of radiation belt particles (at high latitudes and in the South Atlantic Anomaly [SAA]) and cosmic rays all over the planet. True BLUEs can not be fully distinguished from radiation belt particles and cosmic rays unless other ground-based measurements associated with the optically detected BLUEs are available. Thus, the search algorithm of BLUEs presented in Soler et al. (2021), https://doi.org/10.1029/2021gl094657 is now completed with a new additional step that, if used, can considerably smooth the SAA shadow but can also underestimate the number of BLUEs worldwide.

3.
J Geophys Res Atmos ; 125(9): e2019JD032099, 2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32728503

RESUMEN

Narrow bipolar events (NBEs) (also called narrow bipolar pulses [NBPs] or compact intracloud discharges [CIDs]) are energetic intracloud discharges characterized by narrow bipolar electromagnetic waveforms identified from ground-based very low frequency (VLF)/low-frequency (LF) observations. The simplified ray-theory method proposed by Smith et al. (1999, https://doi.org/10.1029/1998JD200045; 2004, https://doi.org/10.1029/2002RS002790) is widely used to infer the altitude of intracloud lightning and the effective (or virtual) reflection height of the ionosphere from VLF/LF signals. However, due to the large amount of high-frequency components in NBEs, the propagation effect of the electromagnetic fields for NBEs at large distance depends nontrivially on the geometry and the effective conductivity of the Earth-ionosphere waveguide (EIWG). In this study, we investigate the propagation of NBEs by using a full-wave Finite-Difference Time-Domain (FDTD) approach. The simulated results are compared with ground-based measurements at different distances in Southern China, and we assess the accuracy of the simplified ray-theory method in estimating the altitude of the NBE source and the effective reflection height of the ionosphere. It is noted that the evaluated NBE altitudes have a slight difference of about ±1 km when compared with the full-wave FDTD results, while the evaluated ionospheric reflection heights are found to be bigger than those obtained from FDTD model by about 5 km.

4.
J Geophys Res Atmos ; 124(22): 12356-12370, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-32355584

RESUMEN

The spatial nonuniformity of the electric field in air discharges, such as streamers, can influence the accuracy of spectroscopic diagnostic methods and hence the estimation of the peak electric field. In this work, we use a self-consistent streamer discharge model to investigate the spatial nonuniformity in streamer heads and streamer glows. We focus our analysis on air discharges at atmospheric pressure and at the low pressure of the mesosphere. This approach is useful to investigate the spatial nonuniformity of laboratory discharges as well as sprite streamers and blue jet streamers, two types of transient luminous events taking place above thunderclouds. This characterization of the spatial nonuniformity of the electric field in air discharges allows us to develop two different spectroscopic diagnostic methods to estimate the peak electric field in cold plasmas. The commonly employed method to derive the peak electric field in streamer heads underestimates the electric field by about 40-50% as a consequence of the high spatial nonuniformity of the electric field. Our diagnostic methods reduce this underestimation to about 10-20%. However, our methods are less accurate than previous methods for streamer glows, where the electric field is uniformly distributed in space. Finally, we apply our diagnostic methods to the measured optical signals in the second positive system of N2 and the first negative system of N 2 + of sprites recorded by Armstrong et al. (1998, https://doi.org/10.1016/S1364-6826(98)00026-1) during the SPRITE's 1995 and 1996 campaigns.

5.
J Geophys Res Atmos ; 123(1): 139-159, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29527426

RESUMEN

We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA