Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 581(7806): 71-76, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376954

RESUMEN

Vascular contributions to dementia and Alzheimer's disease are increasingly recognized1-6. Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction7, including the early clinical stages of Alzheimer's disease5,8-10. The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer's disease11-14, leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes15-19, which maintain BBB integrity20-22. It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the ε3/ε4 or ε4/ε4 alleles) are distinguished from those without APOE4 (ε3/ε3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-ß or tau pathology measured in cerebrospinal fluid or by positron emission tomography23. High baseline levels of the BBB pericyte injury biomarker soluble PDGFRß7,8 in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-ß and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway19 in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer's disease pathology, and might be a therapeutic target in APOE4 carriers.


Asunto(s)
Apolipoproteína E4/genética , Barrera Hematoencefálica/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Capilares/patología , Ciclofilina A/líquido cefalorraquídeo , Ciclofilina A/metabolismo , Femenino , Heterocigoto , Hipocampo/irrigación sanguínea , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/líquido cefalorraquídeo , Metaloproteinasa 9 de la Matriz/metabolismo , Giro Parahipocampal/irrigación sanguínea , Pericitos/patología , Tomografía de Emisión de Positrones , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/líquido cefalorraquídeo , Lóbulo Temporal/irrigación sanguínea , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/metabolismo
2.
Alzheimers Dement ; 20(3): 1784-1796, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38108158

RESUMEN

INTRODUCTION: Vascular risk factors contribute to cognitive decline suggesting that maintaining cerebrovascular health could reduce dementia risk. The objective of this study is to evaluate the association of cerebrovascular reactivity (CVR), a measure of brain blood vessel elasticity, with mild cognitive impairment (MCI) and dementia. METHODS: Participants were enrolled in the Systolic Blood Pressure Intervention Trial Memory and Cognition in Decreased Hypertension (SPRINT-MIND) magnetic resonance imaging substudy. Baseline CVR in Alzheimer's disease (AD) signature regions were primary variables of interest. The occipital pole and postcentral gyrus were included as control regions. RESULTS: Higher AD composite CVR was associated with lower MCI risk. No significant associations between inferior temporal gyrus, occipital pole, or postcentral gyrus CVR and MCI risk, or any regional CVR-combined risk associations were observed. DISCUSSION: CVR in AD signature regions is negatively associated with occurrence of MCI, implicating CVR in AD signature regions as a potential mechanism leading to cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Hipertensión , Humanos , Enfermedad de Alzheimer/patología , Cognición/fisiología , Disfunción Cognitiva/patología , Hipertensión/complicaciones , Imagen por Resonancia Magnética , Adulto , Ensayos Clínicos como Asunto
3.
Brain ; 145(8): 2823-2833, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35759327

RESUMEN

Accumulating data suggest that cerebrovascular disease contributes to Alzheimer's disease pathophysiology and progression toward dementia. Cerebral amyloid angiopathy is a form of cerebrovascular pathology that results from the build-up of ß-amyloid in the vessel walls. Cerebral amyloid angiopathy commonly co-occurs with Alzheimer's disease pathology in the ageing brain and increases the risk of Alzheimer's disease dementia. In the present study, we examined whether cerebral amyloid angiopathy influences tau deposition and cognitive decline independently or synergistically with parenchymal ß-amyloid burden. Secondly, we examined whether tau burden mediates the association between cerebral amyloid angiopathy and cognitive decline. We included data from autopsied subjects recruited from one of three longitudinal clinical-pathological cohort studies: the Rush Memory and Aging Project, the Religious Orders Study and the Minority Aging Research Study. Participants completed annual clinical and cognitive evaluations and underwent brain autopsy. Cerebral amyloid angiopathy pathology was rated as none, mild, moderate or severe. Bielschowsky silver stain was used to visualize neuritic ß-amyloid plaques and neurofibrillary tangles. We used linear regression and linear mixed models to test independent versus interactive associations of cerebral amyloid angiopathy and neuritic plaque burden with tau burden and longitudinal cognitive decline, respectively. We used causal mediation models to examine whether tau mediates the association between cerebral amyloid angiopathy and cognitive decline. The study sample included 1722 autopsied subjects (age at baseline = 80.2 ± 7.1 years; age at death = 89.5 ± 6.7 years; 68% females). Cerebral amyloid angiopathy interacted with neuritic plaques to accelerate tau burden and cognitive decline. Specifically, those with more severe cerebral amyloid angiopathy pathology and higher levels of neuritic plaque burden had greater tau burden and faster cognitive decline. We also found that tau mediated the association between cerebral amyloid angiopathy and cognitive decline among participants with higher neuritic plaque burden. In summary, more severe levels of cerebral amyloid angiopathy and higher parenchymal ß-amyloid burden interacted to promote cognitive decline indirectly via tau deposition. These results highlight the dynamic interplay between cerebral amyloid angiopathy and Alzheimer's disease pathology in accelerating progression toward dementia. These findings have implications for Alzheimer's disease clinical trials and therapeutic development.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Disfunción Cognitiva , Péptidos beta-Amiloides , Encéfalo , Femenino , Humanos , Masculino , Placa Amiloide , Proteínas tau
4.
Brain ; 145(10): 3536-3545, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35869598

RESUMEN

Females show a disproportionate burden of Alzheimer's disease pathology and higher Alzheimer's disease dementia prevalences compared to males, yet the mechanisms driving these vulnerabilities are unknown. There is sexual dimorphism in immunological functioning, and neuroimmune processes are implicated in Alzheimer's disease genesis. Using neuropathology indicators from human brain tissue, we examined the mediational role of microglial activation on the relationship between amyloid and tau and how it differs by sex. 187 decedents (64% female; 89 mean age at death; 62% non-demented) from the Rush Memory and Aging Project completed neuropathological evaluations with brain tissue quantified for microglial activation, amyloid-ß and tau. Proportion of morphologically activated microglia was determined via immunohistochemistry (HLA-DP-DQ-DR) and morphological staging (stage I, II or III). Amyloid-ß and tau burden were quantified via immunohistochemistry (M00872 or AT8, respectively). Using causal counterfactual modelling, we estimated the mediational effect of microglial activation on the amyloid-ß to tau relationship in the whole sample and stratified by sex (amyloid-ß â†’ microglial activation → tau). Alternative models tested the role of microglia activation as the precipitating event (microglial activation → amyloid-ß â†’ tau). Microglial activation significantly mediated 33% [95% confidence interval (CI) 10-67] of the relationship between amyloid-ß and tau in the whole sample; stratified analyses suggested this effect was stronger and only statistically significant in females. 57% (95% CI 22-100) of the effect of amyloid-ß on tau was mediated through microglial activation in females, compared to 19% (95% CI 0-64) in males. Regional analyses suggested that mediational effects were driven by greater cortical versus subcortical microglial activation. Relationships were independent of cerebrovascular disease indices. Alternative models suggested that in females, microglial activation was a significant exposure both preceding the amyloid-ß to tau relationship (mediational effect: 50%, 95% CI 23-90) and directly related to tau burden (microglia direct effect: 50%, 95% CI 10-77). By contrast, in males, only the direct effect of microglial activation to tau reached significance (74%, 95% CI 32-100) (mediational effect: 26%, 95% CI 0-68). Our models suggest a reciprocal, bidirectional relationship between amyloid-ß and microglial activation that significantly accounts for tau burden in females. By contrast, in males, direct independent (non-mediational) relationships between microglial activation or amyloid-ß with tau were observed. Microglial activation may be disproportionately important for Alzheimer's disease pathogenesis in females. Determining sex-specific vulnerabilities to Alzheimer's disease development both inform fundamental pathophysiology and support precision health approaches for this heterogeneous disease.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Femenino , Humanos , Anciano , Enfermedad de Alzheimer/patología , Microglía/patología , Proteínas tau , Péptidos beta-Amiloides , Antígenos HLA-DP
5.
Alzheimers Dement ; 19(5): 2069-2083, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36224040

RESUMEN

Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD), with impaired energy metabolism preceding the onset of clinical symptoms. Here we propose an update to the mitochondrial dysfunction hypothesis of AD based on recent results examining the role of mitochondrial genome abundance in AD. In a large post mortem study, we show that lower brain mitochondrial genome abundance is associated with a greater odds of AD neuropathological change and worse cognitive performance. We hypothesize that lower mitochondrial genome abundance impairs mitochondrial function by reducing mitochondrial bioenergetics, thereby impacting neuronal and glial cell function. However, it remains to be determined if mitochondrial dysfunction causes, mediates, or is a by-product of AD pathogenesis. Additional support for this hypothesis will be generated by linking peripheral blood mitochondrial genome abundance to AD and establishing clinical trials of compounds that upregulate total mitochondrial genome abundance or boost mitochondrial mass.


Asunto(s)
Enfermedad de Alzheimer , Genoma Mitocondrial , Humanos , Enfermedad de Alzheimer/patología , Mitocondrias/genética , Metabolismo Energético , Encéfalo/patología
6.
Alzheimers Dement ; 19(6): 2508-2519, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36516004

RESUMEN

INTRODUCTION: The apolipoprotein E (APOE) genotype is a driver of cognitive decline and dementia. We used causal mediation methods to characterize pathways linking the APOE genotype to late-life cognition through Alzheimer's disease (AD) and non-AD neuropathologies. METHODS: We analyzed autopsy data from 1671 individuals from the Religious Orders Study, Memory and Aging Project, and Minority Aging Research Study (ROS/MAP/MARS) studies with cognitive assessment within 5 years of death and autopsy measures of AD (amyloid beta (Aß), neurofibrillary tangles), vascular (athero/arteriolo-sclerosis, micro-infarcts/macro-infarcts), and non-AD neurodegenerative neuropathologies (TAR DNA protein 43 [TDP-43], Lewy bodies, amyloid angiopathy, hippocampal sclerosis). RESULTS: The detrimental effect of APOE ε4 on cognition was mediated by summary measures of AD and non-AD neurodegenerative neuropathologies but not vascular neuropathologies; effects were strongest in individuals with dementia. The protective effect of APOE ε2 was partly mediated by AD neuropathology and stronger in women than in men. DISCUSSION: The APOE genotype influences cognition and dementia through multiple neuropathological pathways, with implications for different therapeutic strategies targeting people at increased risk for dementia. HIGHLIGHTS: Both apolipoprotein E (APOE) ε2 and APOE ε4 effects on late-life cognition are mediated by AD neuropathology. The estimated mediated effects of most measures of AD neuropathology were similar. Non-Alzheimer's disease (AD) neurodegenerative pathologies mediate the effect of ε4 independently from AD. Non-AD vascular pathologies did not mediate the effect of the APOE genotype on cognition. The protective effect of APOE ε2 on cognition was stronger in women.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Masculino , Humanos , Femenino , Apolipoproteína E4/genética , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E2/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Genotipo , Cognición
7.
Alzheimers Dement ; 19(10): 4651-4661, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36994910

RESUMEN

INTRODUCTION: We examined whether sex modifies the association between APOE ε2 and cognitive decline in two independent samples. METHODS: We used observational data from cognitively unimpaired non-Hispanic White (NHW) and non-Hispanic Black (NHB) adults. Linear mixed models examined interactive associations of APOE genotype (ε2 or ε4 carrier vs. ε3/ε3) and sex on cognitive decline in NHW and NHB participants separately. RESULTS: In both Sample 1 (N = 9766) and Sample 2 (N = 915), sex modified the association between APOE ε2 and cognitive decline in NHW participants. Specifically, relative to APOE ε3/ε3, APOE ε2 protected against cognitive decline in men but not women. Among APOE ε2 carriers, men had slower decline than women. Among APOE ε3/ε3 carriers, cognitive trajectories did not differ between sexes. There were no sex-specific associations of APOE ε2 with cognition in NHB participants (N = 2010). DISCUSSION: In NHW adults, APOE ε2 may protect men but not women against cognitive decline. HIGHLIGHTS: We studied sex-specific apolipoprotein E (APOE) ε2 effects on cognitive decline. In non-Hispanic White (NHW) adults, APOE ε2 selectively protects men against decline. Among men, APOE ε2 was more protective than APOE ε3/ε3. In women, APOE ε2 was no more protective than APOE ε3/ε3. Among APOE ε2 carriers, men had slower decline than women. There were no sex-specific APOE ε2 effects in non-Hispanic Black (NHB) adults.


Asunto(s)
Apolipoproteína E2 , Disfunción Cognitiva , Caracteres Sexuales , Adulto , Femenino , Humanos , Masculino , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Disfunción Cognitiva/genética , Genotipo
8.
J Neurosci ; 40(44): 8573-8586, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33046556

RESUMEN

Tau pathology and vascular dysfunction are important contributors to Alzheimer's disease (AD), but vascular-tau associations and their effects on cognition are poorly understood. We investigated these associations in male and female humans by conducting voxelwise comparisons between cerebral blood flow (CBF) and tau positron emission tomography (PET) images in independent discovery [cognitively normal (CN), 19; mild cognitive impairment (MCI) risk, 43; MCI, 6] and replication (CN,73; MCI, 45; AD, 20) cohorts. In a subgroup, we assessed relationships between tau and soluble platelet-derived growth factor ß (sPDGFRß), a CSF marker of pericyte injury. We tested whether CBF/sPDGFRß-tau relationships differed based on Montreal Cognitive Assessment (MoCA) global cognition performance, or based on amyloid burden. Mediation analyses assessed relationships among CBF/sPDGFRß, tau, and cognition. Negative CBF-tau correlations were observed predominantly in temporal-parietal regions. In the replication cohort, early negative CBF-tau correlations increased in spatial extent and in strength of correlation with increased disease severity. Stronger CBF-tau and sPDGFRß-tau correlations were observed in participants with greater amyloid burden and lower MoCA scores. Importantly, when stratifying by amyloid status, stronger CBF-tau relationships in individuals with lower MoCA scores were driven by amyloid+ participants. Tau PET was a significant mediator CBF/sPDGFRß-MoCA relationships in numerous regions. Our results demonstrate vascular-tau associations across the AD spectrum and suggest that early vascular-tau associations are exacerbated in the presence of amyloid, consistent with a two-hit model of AD on cognition. Combination treatments targeting vascular health, as well as amyloid-ß and tau levels, may preserve cognitive function more effectively than single-target therapies.SIGNIFICANCE STATEMENT Emerging evidence demonstrates a role for vascular dysfunction as a significant contributor to Alzheimer's pathophysiology. However, associations between vascular dysfunction and tau pathology, and their effects on cognition remain poorly understood. Multimodal neuroimaging data from two independent cohorts were analyzed to provide novel in vivo evidence of associations between cerebral blood flow (CBF), an MRI measure of vascular health, and tau pathology using PET. CBF-tau associations were related to cognition and driven in part by amyloid burden. Soluble platelet-derived growth factor ß, an independent CSF vascular biomarker, confirmed vascular-tau associations in a subgroup analysis. These results suggest that combination treatments targeting vascular health, amyloid-ß, and tau levels may more effectively preserve cognitive function than single-target therapies.


Asunto(s)
Amiloide/metabolismo , Vasos Sanguíneos/diagnóstico por imagen , Cognición , Proteínas tau/metabolismo , Anciano , Enfermedad de Alzheimer/metabolismo , Circulación Cerebrovascular , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/líquido cefalorraquídeo
9.
BMC Bioinformatics ; 22(1): 417, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470617

RESUMEN

BACKGROUND: Variation in mitochondrial DNA (mtDNA) identified by genotyping microarrays or by sequencing only the hypervariable regions of the genome may be insufficient to reliably assign mitochondrial genomes to phylogenetic lineages or haplogroups. This lack of resolution can limit functional and clinical interpretation of a substantial body of existing mtDNA data. To address this limitation, we developed and evaluated a large, curated reference alignment of complete mtDNA sequences as part of a pipeline for imputing missing mtDNA single nucleotide variants (mtSNVs). We call our reference alignment and pipeline MitoImpute. RESULTS: We aligned the sequences of 36,960 complete human mitochondrial genomes downloaded from GenBank, filtered and controlled for quality. These sequences were reformatted for use in imputation software, IMPUTE2. We assessed the imputation accuracy of MitoImpute by measuring haplogroup and genotype concordance in data from the 1000 Genomes Project and the Alzheimer's Disease Neuroimaging Initiative (ADNI). The mean improvement of haplogroup assignment in the 1000 Genomes samples was 42.7% (Matthew's correlation coefficient = 0.64). In the ADNI cohort, we imputed missing single nucleotide variants. CONCLUSION: These results show that our reference alignment and panel can be used to impute missing mtSNVs in existing data obtained from using microarrays, thereby broadening the scope of functional and clinical investigation of mtDNA. This improvement may be particularly useful in studies where participants have been recruited over time and mtDNA data obtained using different methods, enabling better integration of early data collected using less accurate methods with more recent sequence data.


Asunto(s)
ADN Mitocondrial , Polimorfismo de Nucleótido Simple , ADN Mitocondrial/genética , Frecuencia de los Genes , Genoma Humano , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Filogenia
10.
Brain Behav Immun ; 94: 299-307, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33486003

RESUMEN

CNS inflammation is a key factor in Alzheimer's Disease (AD), but its relation to pathological Aß, tau, and APOE4 is poorly understood, particularly prior to the onset of cognitive symptoms. To better characterize early relationships between inflammation, APOE4, and AD pathology, we assessed correlations between cerebrospinal fluid (CSF) inflammatory markers and brain levels of Aß and tau in cognitively normal older adults. Each participant received a lumbar puncture to collect and quantify CSF levels of TNFα, IL-6, IL-8, and IL-10, a T1-weighted MRI, and PET scanning with [18F]flortaucipir (FTP; n = 57), which binds to tau tangles and/or [18F]florbetapir (FBP; n = 58), which binds to Aß. Parallel voxelwise regressions assessed relationships between each CSF inflammatory marker and FTP and FBP SUVR, as well as APOE4*CSF inflammation interactions. Unexpectedly, we detected significant negative associations between regional Aß and tau PET uptake and CSF inflammatory markers. For Aß PET, we detected negative associations with CSF IL-6 and IL-8 in regions known to show early accumulation of Aß (i.e. lateral and medial frontal lobes). For tau PET, negative relationships were observed with CSF TNFα and IL-8, predominantly in regions known to exhibit early tau accumulation (i.e. medial temporal lobe). In subsequent analyses, significant interactions between APOE4 status and IL-8 on Aß and tau PET levels were observed in spatially distinct regions from those showing CSF-Aß/tau relationships. Results from the current cross-sectional study support previous findings that neuroinflammation may be protective against AD pathology at a given stage of the disease, and extend these findings to a cognitively normal aging population. This study provides new insight into a dynamic relationship between neuroinflammation and AD pathology and may have implications for whom and when neuroinflammatory therapies may be appropriate.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Estudios Transversales , Humanos , Tomografía de Emisión de Positrones , Proteínas tau
11.
Alzheimers Dement ; 16(6): 821-830, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32301266

RESUMEN

INTRODUCTION: Blood-brain barrier (BBB) breakdown and loss of brain capillary pericytes contributes to cognitive impairment. Pericytes express platelet-derived growth factor receptor-ß (PDGFRß) that regulates brain angiogenesis and blood vessel stability. Elevated soluble PDGFRß (sPDGFRß) levels in cerebrospinal fluid (CSF) indicate pericyte injury and BBB breakdown, which is an early biomarker of human cognitive dysfunction. METHODS: A combination of reagents and conditions were tested, optimized, and validated on the Meso Scale Discovery electrochemiluminescence platform to develop a new sPDGFRß immunoassay that was used to measure sPDGFRß in human CSF from 147 individuals. RESULTS: We developed standard operating procedures for a highly sensitive and reproducible sPDGFRß immunoassay with a dynamic range from 100 to 26,000 pg/mL, and confirmed elevated CSF sPDGFRß levels in individuals with cognitive dysfunction. DISCUSSION: This assay could be applied at different laboratories to study brain pericytes and microvascular damage in relation to cognition in disorders associated with neurovascular and cognitive dysfunction.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Disfunción Cognitiva/diagnóstico , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Barrera Hematoencefálica/patología , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/patología , Humanos , Pericitos/patología , Sensibilidad y Especificidad
12.
Alzheimers Dement ; 16(8): 1164-1172, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543785

RESUMEN

INTRODUCTION: Inherited mitochondrial DNA (mtDNA) variants may influence Alzheimer's disease (AD) risk. METHODS: We sequenced mtDNA from 146 AD and 265 cognitively normal (CN) subjects from the University of Kansas AD Center (KUADC) and assigned haplogroups. We further considered 244 AD and 242 CN AD Neuroimaging Initiative (ADNI) subjects with equivalent data. RESULTS: Without applying multiple comparisons corrections, KUADC haplogroup J AD and CN frequencies were 16.4% versus 7.6% (P = .007), and haplogroup K AD and CN frequencies were 4.8% versus 10.2% (P = .063). ADNI haplogroup J AD and CN frequencies were 10.7% versus 7.0% (P = .20), and haplogroup K frequencies were 4.9% versus 8.7% (P = .11). For the combined 390 AD and 507 CN cases haplogroup J frequencies were 12.8% versus 7.3% (P = .006), odds ratio (OR) = 1.87, and haplogroup K frequencies were 4.9% versus 9.5% (P = .010), OR = 0.49. Associations remained significant after adjusting for apolipoprotein E, age, and sex. CONCLUSION: This exploratory analysis suggests inherited mtDNA variants influence AD risk.


Asunto(s)
Enfermedad de Alzheimer/genética , ADN Mitocondrial/genética , Predisposición Genética a la Enfermedad/genética , Anciano , Estudios de Cohortes , Femenino , Haplotipos , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad
13.
Magn Reson Med ; 82(2): 658-670, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31020721

RESUMEN

PURPOSE: Pathological states occur when cerebrospinal fluid (CSF) and cerebral blood flow (CBF) dynamics become dysregulated in the brain. Phase-contrast MRI (PC-MRI) is a noninvasive imaging technique that enables quantitative measurements of CSF and CBF flow. While studies have validated PC-MRI as an imaging technique for flow, few studies have evaluated its reliability for CSF and CBF flow parameters commonly associated with neurological disease. The purpose of this study was to evaluate test-retest reliability at the cerebral aqueduct (CA) and C2-C3 area using PC-MRI to assess the feasibility of investigating CSF and CBF flow dynamics. METHODS: This study was performed on 27 cognitively normal young adults (ages 20-35 years). Flow data was acquired on a 3T Siemens Prisma using a 2D cine-PC pulse sequence. Three consecutive flow measurements were acquired at the CA and C2-C3 area. Intraclass correlation coefficient (ICC) and coefficient of variance (CV) were used to evaluate intrarater, inter-rater, and test-retest reliability. RESULTS: Among the 26 flow parameters analyzed, 22 had excellent reliability (ICC > 0.80), including measurements of CSF stroke volume, flush peak, and fill peak, and 4 parameters had good reliability (ICC 0.60-0.79). 16 flow parameters had a mean CV ≤ 10%, 7 had a CV ≤ 15%, and 3 had a CV ≤ 30%. All CSF and CBF flow measurements had excellent inter-rater and intrarater reliability (ICC > 0.80). CONCLUSION: This study shows that CSF and CBF flow can be reliably measured at the CA and C2-C3 area using PC-MRI, making it a promising tool for studying flow dynamics in the central nervous system.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Líquido Cefalorraquídeo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Masculino , Fantasmas de Imagen , Reproducibilidad de los Resultados , Adulto Joven
14.
Alzheimers Dement ; 15(1): 158-167, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642436

RESUMEN

Increasing evidence recognizes Alzheimer's disease (AD) as a multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. The recently updated AD Research Framework put forth by the National Institute on Aging-Alzheimer's Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction is an important early event in AD pathophysiology. Next, we examined various imaging sequences that could be easily implemented to evaluate different types of vascular dysfunction associated with, and/or contributing to, AD pathophysiology, including changes in blood-brain barrier integrity and cerebral blood flow. Vascular imaging biomarkers of small vessel disease of the brain, which is responsible for >50% of dementia worldwide, including AD, are already established, well characterized, and easy to recognize. We suggest that these vascular biomarkers should be incorporated into the AD Research Framework to gain a better understanding of AD pathophysiology and aid in treatment efforts.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Biomarcadores , Enfermedades Vasculares/fisiopatología , Sustancia Blanca/patología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Circulación Cerebrovascular/fisiología , Humanos , National Institute on Aging (U.S.) , Estados Unidos
15.
Acta Neuropathol ; 131(5): 687-707, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27038189

RESUMEN

Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico por imagen , Malformaciones Vasculares del Sistema Nervioso Central/etiología , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Humanos , Neuroimagen
16.
Neuroimage ; 84: 443-52, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24018304

RESUMEN

As the aging population grows, it has become increasingly important to carefully characterize amnestic mild cognitive impairment (aMCI), a preclinical stage of Alzheimer's disease (AD). Functional magnetic resonance imaging (fMRI) is a valuable tool for monitoring disease progression in selectively vulnerable brain regions associated with AD neuropathology. However, the reliability of fMRI data in longitudinal studies of older adults with aMCI is largely unexplored. To address this, aMCI participants completed two visual working tasks, a Delayed-Recognition task and a One-Back task, on three separate scanning sessions over a three-month period. Test-retest reliability of the fMRI blood oxygen level dependent (BOLD) activity was assessed using an intraclass correlation (ICC) analysis approach. Results indicated that brain regions engaged during the task displayed greater reliability across sessions compared to regions that were not utilized by the task. During task-engagement, differential reliability scores were observed across the brain such that the frontal lobe, medial temporal lobe, and subcortical structures exhibited fair to moderate reliability (ICC=0.3-0.6), while temporal, parietal, and occipital regions exhibited moderate to good reliability (ICC=0.4-0.7). Additionally, reliability across brain regions was more stable when three fMRI sessions were used in the ICC calculation relative to two fMRI sessions. In conclusion, the fMRI BOLD signal is reliable across scanning sessions in this population and thus a useful tool for tracking longitudinal change in observational and interventional studies in aMCI.


Asunto(s)
Envejecimiento , Corteza Cerebral/fisiopatología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/fisiopatología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento Visual de Modelos , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Neuroimage ; 95: 61-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24675647

RESUMEN

Decline in executive function is the most common age-associated cognitive deficit and may be a risk factor for neurodegenerative disease. The antisaccade (AS) task involves inhibition of a prepotent visuomotor response and is a well-validated executive function test in aging and neurodegeneration. We investigated the functional connectivity of the cortical oculomotor network during successful AS performance in healthy elders. Elevated BOLD activity in the right lateral frontal eye field (rlatFEF), a region linked to volume loss in individuals with impaired AS performance, was associated with worse AS performance and weaker network efficiency. In contrast, hub integrity of the right dorsolateral prefrontal cortex (rDLPFC) and anterior cingulate cortex (rACC) was associated with better AS performance. These data suggest that while several right lateral frontal regions are central nodes in the oculomotor network, the rlatFEF demonstrates early neural aberrations and the rDLPFC and rACC continue to support inhibitory cognitive control in healthy elders. We conclude that alterations in AS task functional connectivity, quantified as hub and network efficiency, may be clinically-relevant biomarkers of cognitive decline in executive functioning.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiopatología , Función Ejecutiva/fisiología , Vías Nerviosas/fisiopatología , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Movimientos Sacádicos
18.
Ann Neurol ; 73(6): 762-73, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23447373

RESUMEN

OBJECTIVE: The importance of the cholinergic system for cognitive function has been well documented in animal and human studies. The objective of this study was to elucidate the cognitive and functional connectivity changes associated with enhanced acetylcholine levels. We hypothesized that older adults with mild memory deficits would show behavioral and functional network enhancements with an acetylcholinesterase inhibitor treatment (donepezil) when compared to a placebo control group. METHODS: We conducted a 3-month, double-blind, placebo-controlled study on the effects of donepezil in 27 older adults with mild memory deficits. Participants completed a delayed recognition memory task. Functional magnetic resonance imaging (fMRI) scans were collected at baseline prior to treatment and at 3-month follow-up while subjects were on a 10mg daily dose of donepezil or placebo. RESULTS: Donepezil treatment significantly enhanced the response time for face and scene memory probes when compared to the placebo group. A group-by-visit interaction was identified for the functional network connectivity of the left fusiform face area (FFA) with the hippocampus and inferior frontal junction, such that the treatment group showed increased connectivity over time when compared to the placebo group. Additionally, the enhanced functional network connectivity of the FFA and hippocampus significantly predicted memory response time at 3-month follow-up in the treatment group. INTERPRETATION: These findings suggest that increased cholinergic transmission improves goal-directed neural processing and cognitive ability and may serve to facilitate communication across functionally-connected attention and memory networks. Longitudinal fMRI is a useful method for elucidating the neural changes associated with pharmacological modulation and is a potential tool for monitoring intervention efficacy in clinical trials.


Asunto(s)
Encéfalo/fisiopatología , Inhibidores de la Colinesterasa/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/psicología , Red Nerviosa/fisiología , Regulación hacia Arriba/fisiología , Anciano , Anciano de 80 o más Años , Encéfalo/efectos de los fármacos , Disfunción Cognitiva/fisiopatología , Donepezilo , Método Doble Ciego , Femenino , Humanos , Indanos/uso terapéutico , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Red Nerviosa/efectos de los fármacos , Estimulación Luminosa/métodos , Piperidinas/uso terapéutico , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Regulación hacia Arriba/efectos de los fármacos
19.
medRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562783

RESUMEN

Background: Amyloid beta protein (Aß) is a treatment target in Alzheimer's Disease (AD). Lowering production of its parent protein, APP, has benefits in preclinical models. Posiphen binds to an iron-responsive element in APP mRNA and decreases translation of APP and Aß. To augment human data for Posiphen, we evaluated safety, tolerability and pharmacokinetic and pharmacodynamic (PD) effects on Aß metabolism using Stable Isotope Labeling Kinetic (SILK) analysis. Methods: Double-blind phase 1b randomized ascending dose clinical trial, at five sites, under an IRB-approved protocol. Participants with mild cognitive impairment or mild AD (Early AD) with positive CSF biomarkers were randomized (within each dose arm) to Posiphen or placebo. Pretreatment assessment included lumbar puncture for CSF. Participants took Posiphen or placebo for 21-23 days, then underwent CSF catheter placement, intravenous infusion of 13C6-leucine, and CSF sampling for 36 hours. Safety and tolerability were assessed through participant reports, EKG and laboratory tests. CSF SILK analysis measured Aß40, 38 and 42 with immunoprecipitation-mass spectrometry. Baseline and day 21 CSF APP, Aß and other biomarkers were measured with immunoassays. The Mini-Mental State Exam and ADAS-cog12 were given at baseline and day 21. Results: From June 2017 to December 2021, 19 participants were enrolled, in dose cohorts (6 active: 2 placebo) of 60 mg once/day and 60 mg twice/day; 1 participant was enrolled and completed 60 mg three times/day. 10 active drug and 5 placebo participants completed all study procedures. Posiphen was safe and well-tolerated. 8 participants had headaches related to CSF catheterization; 5 needed blood patches. Prespecified SILK analyses of Fractional Synthesis Rate (FSR) for CSF Aß40 showed no significant overall or dose-dependent effects of Posiphen vs. placebo. Comprehensive multiparameter modeling of APP kinetics supported dose-dependent lowering of APP production by Posiphen. Cognitive measures and CSF biomarkers did not change significantly from baseline to 21 days in Posiphen vs placebo groups. Conclusions: Posiphen was safe and well-tolerated in Early AD. A multicenter SILK study was feasible. Findings are limited by small sample size but provide additional supportive safety and PK data. Comprehensive modeling of biomarker dynamics using SILK data may reveal subtle drug effects. Trial registration: NCT02925650 on clinicaltrials.gov.

20.
Alzheimers Res Ther ; 16(1): 151, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970127

RESUMEN

BACKGROUND: Amyloid beta protein (Aß) is a treatment target in Alzheimer's Disease (AD). Lowering production of its parent protein, APP, has benefits in preclinical models. Posiphen, an orally administered small molecule, binds to an iron-responsive element in APP mRNA and decreases translation of APP and Aß. To augment human data for Posiphen, we evaluated safety, tolerability and pharmacokinetic and pharmacodynamic (PD) effects on Aß metabolism using Stable Isotope Labeling Kinetic (SILK) analysis. METHODS: Double-blind phase 1b randomized ascending dose clinical trial, at five sites, under an IRB-approved protocol. Participants with mild cognitive impairment or mild AD (Early AD) confirmed by low CSF Aß42/40 were randomized (within each dose arm) to Posiphen or placebo. Pretreatment assessment included lumbar puncture for CSF. Participants took Posiphen or placebo for 21-23 days, then underwent CSF catheter placement, intravenous infusion of 13C6-leucine, and CSF sampling for 36 h. Safety and tolerability were assessed through participant reports, EKG and laboratory tests. CSF SILK analysis measured Aß40, 38 and 42 with immunoprecipitation-mass spectrometry. Baseline and day 21 CSF APP, Aß and other biomarkers were measured with immunoassays. The Mini-Mental State Exam and ADAS-cog12 were given at baseline and day 21. RESULTS: From June 2017 to December 2021, 19 participants were enrolled, randomized within dose cohorts (5 active: 3 placebo) of 60 mg once/day and 60 mg twice/day; 1 participant was enrolled and completed 60 mg three times/day. 10 active drug and 5 placebo participants completed all study procedures. Posiphen was safe and well-tolerated. 8 participants had headaches related to CSF catheterization; 5 needed blood patches. Prespecified SILK analyses of Fractional Synthesis Rate (FSR) for CSF Aß40 showed no significant overall or dose-dependent effects of Posiphen vs. placebo. Comprehensive multiparameter modeling of APP kinetics supported dose-dependent lowering of APP production by Posiphen. Cognitive measures and CSF biomarkers did not change significantly from baseline to 21 days in Posiphen vs. placebo groups. CONCLUSIONS: Posiphen was safe and well-tolerated in Early AD. A multicenter SILK study was feasible. Findings are limited by small sample size but provide additional supportive safety and PK data. Comprehensive modeling of biomarker dynamics using SILK data may reveal subtle drug effects. TRIAL REGISTRATION: NCT02925650 on clinicaltrials.gov (registered on 10-24-2016).


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Método Doble Ciego , Masculino , Femenino , Anciano , Péptidos beta-Amiloides/líquido cefalorraquídeo , Disfunción Cognitiva/tratamiento farmacológico , Persona de Mediana Edad , Relación Dosis-Respuesta a Droga , Fragmentos de Péptidos/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Anciano de 80 o más Años , Precursor de Proteína beta-Amiloide/genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA