Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851889

RESUMEN

Ca2+ is a highly abundant ion involved in numerous biological processes, particularly in multicellular eukaryotic organisms where it exerts many of these functions through interactions with Ca2+ binding proteins. The laminin N-terminal (LN) domain is found in members of the laminin and netrin protein families where it plays a critical role in the function of these proteins. The LN domain of laminins and netrins is a Ca2+ binding domain and in many cases requires Ca2+ to perform its biological function. Here, we conduct a detailed examination of the molecular basis of the LN domain Ca2+ interaction combining structural, computational, bioinformatics, and biophysical techniques. By combining computational and bioinformatic techniques with x-ray crystallography we explore the molecular basis of the LN domain Ca2+ interaction and identify a conserved sequence present in Ca2+ binding LN domains. These findings enable a sequence-based prediction of LN domain Ca2+ binding ability. We use thermal shift assays and isothermal titration calorimetry to explore the biophysical properties of the LN domain Ca2+ interaction. We show that the netrin-1 LN domain exhibits a high affinity and specificity for Ca2+, which structurally stabilizes the LN domain. This study elucidates the molecular foundation of the LN domain Ca2+ binding interaction and provides a detailed functional characterization of this essential interaction, advancing our understanding of protein-Ca2+ dynamics within the context of the LN domain.

2.
Nat Commun ; 14(1): 1226, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869049

RESUMEN

Netrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1. Remarkably, the monomer-dimer equilibrium of netrin-1 in solution is abolished in the presence of heparin oligosaccharides and replaced with highly hierarchical and distinct super assemblies leading to unique, yet unknown netrin-1 filament formation. In our integrated approach we provide a molecular mechanism for the filament assembly which opens fresh paths towards a molecular understanding of netrin-1 functions.


Asunto(s)
Glicosaminoglicanos , Heparina , Netrina-1 , Orientación del Axón , Diferenciación Celular , Proteoglicanos de Heparán Sulfato
3.
J Nucleic Acids ; 2017: 9675348, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250441

RESUMEN

Guanine quadruplexes (G4s) are four-stranded secondary structures of nucleic acids which are stabilized by noncanonical hydrogen bonding systems between the nitrogenous bases as well as extensive base stacking, or pi-pi, interactions. Formation of these structures in either genomic DNA or cellular RNA has the potential to affect cell biology in many facets including telomere maintenance, transcription, alternate splicing, and translation. Consequently, G4s have become therapeutic targets and several small molecule compounds have been developed which can bind such structures, yet little is known about how G4s interact with their native protein binding partners. This review focuses on the recognition of G4s by proteins and small peptides, comparing the modes of recognition that have thus far been observed. Emphasis will be placed on the information that has been gained through high-resolution crystallographic and NMR structures of G4/peptide complexes as well as biochemical investigations of binding specificity. By understanding the molecular features that lead to specificity of G4 binding by native proteins, we will be better equipped to target protein/G4 interactions for therapeutic purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA