Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell ; 182(2): 329-344.e19, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32589946

RESUMEN

Cell surface receptors and their interactions play a central role in physiological and pathological signaling. Despite its clinical relevance, the immunoglobulin superfamily (IgSF) remains uncharacterized and underrepresented in databases. Here, we present a systematic extracellular protein map, the IgSF interactome. Using a high-throughput technology to interrogate most single transmembrane receptors for binding to 445 IgSF proteins, we identify over 500 interactions, 82% previously undocumented, and confirm more than 60 receptor-ligand pairs using orthogonal assays. Our study reveals a map of cell-type-specific interactions and the landscape of dysregulated receptor-ligand crosstalk in cancer, including selective loss of function for tumor-associated mutations. Furthermore, investigation of the IgSF interactome in a large cohort of cancer patients identifies interacting protein signatures associated with clinical outcome. The IgSF interactome represents an important resource to fuel biological discoveries and a framework for understanding the functional organization of the surfaceome during homeostasis and disease, ultimately informing therapeutic development.


Asunto(s)
Inmunoglobulinas/metabolismo , Neoplasias/patología , Mapas de Interacción de Proteínas , Antígeno B7-H1/metabolismo , Antígeno Carcinoembrionario/metabolismo , Comunicación Celular , Análisis por Conglomerados , Medios de Cultivo Condicionados/química , Células HEK293 , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/genética , Ligandos , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
2.
Mol Cell Proteomics ; 18(11): 2310-2323, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31308249

RESUMEN

Receptors expressed on the plasma membrane and their interacting partners critically regulate cellular communication during homeostasis and disease, and as such represent main therapeutic targets. Despite its importance for drug development, receptor-ligand proteomics has remained a daunting field, in part because of the challenges associated to the study of membrane-expressed proteins. Here, to enable sensitive detection of receptor-ligand interactions in high throughput, we implement a new platform, the Conditioned Media AlphaScreen, for interrogation of a library consisting of most single transmembrane human proteins. Using this method to study key immune receptors, we identify and further validate the interleukin receptor IL20RA as the first binding partner for the checkpoint inhibitor B7-H3. Further, KIR2DL5, a natural killer cell protein that had remained orphan, is uncovered as a functional binding partner for the poliovirus receptor (PVR). This interaction is characterized using orthogonal assays, which demonstrate that PVR specifically engages KIR2DL5 on natural killer cells leading to inhibition of cytotoxicity. Altogether, these results reveal unappreciated links between protein families that may importantly influence receptor-driven functions during disease. Applicable to any target of interest, this technology represents a versatile and powerful approach for elucidation of receptor-ligand interactomes, which is essential to understand basic aspects of the biology of the plasma membrane proteins and ultimately inform the development of novel therapeutic strategies.


Asunto(s)
Antígenos B7/metabolismo , Matriz Extracelular/metabolismo , Células Asesinas Naturales/metabolismo , Receptores de Interleucina/metabolismo , Receptores KIR2DL5/metabolismo , Receptores Virales/metabolismo , Comunicación Celular , Células HEK293 , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Ligandos , Unión Proteica , Mapas de Interacción de Proteínas
3.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663669

RESUMEN

Secreted factors, membrane-tethered receptors, and their interacting partners are main regulators of cellular communication and initiation of signaling cascades during homeostasis and disease, and as such represent prime therapeutic targets. Despite their relevance, these interaction networks remain significantly underrepresented in current databases; therefore, most extracellular proteins have no documented binding partner. This discrepancy is primarily due to the challenges associated with the study of the extracellular proteins, including expression of functional proteins, and the weak, low affinity, protein interactions often established between cell surface receptors. The purpose of this method is to describe the printing of a library of extracellular proteins in a microarray format for screening of protein-protein interactions. To enable detection of weak interactions, a method based on multimerization of the query protein under study is described. Coupled to this microbead-based multimerization approach for increased multivalency, the protein microarray allows robust detection of transient protein-protein interactions in high throughput. This method offers a rapid and low sample consuming-approach for identification of new interactions applicable to any extracellular protein. Protein microarray printing and screening protocol are described. This technology will be useful for investigators seeking a robust method for discovery of protein interactions in the extracellular space.


Asunto(s)
Análisis por Matrices de Proteínas , Espacio Extracelular/metabolismo , Humanos , Ligandos , Unión Proteica , Receptores de Superficie Celular/metabolismo
4.
Sci Rep ; 9(1): 8833, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222070

RESUMEN

In response to environmental and nutrient stress, adipose tissues must establish a new homeostatic state. Here we show that cold exposure of obese mice triggers an adaptive tissue remodeling in visceral adipose tissue (VAT) that involves extracellular matrix deposition, angiogenesis, sympathetic innervation, and adipose tissue browning. Obese VAT is predominated by pro-inflammatory M1 macrophages; cold exposure induces an M1-to-M2 shift in macrophage composition and dramatic changes in macrophage gene expression in both M1 and M2 macrophages. Antibody-mediated CSF1R blocking prevented the cold-induced recruitment of adipose tissue M2 macrophages, suggesting the role of CSF1R signaling in the process. These cold-induced effects in obese VAT are phenocopied by an administration of the FGF21-mimetic antibody, consistent with its action to stimulate sympathetic nerves. Collectively, these studies illuminate adaptive visceral adipose tissue plasticity in obese mice in response to cold stress and antibody-based metabolic therapy.


Asunto(s)
Adaptación Fisiológica , Anticuerpos/farmacología , Respuesta al Choque por Frío , Grasa Intraabdominal/fisiología , Animales , Movimiento Celular , Factores de Crecimiento de Fibroblastos/inmunología , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Obesos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células del Estroma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA