Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Virol ; 95(2): e28512, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36661060

RESUMEN

To date, no comprehensive marker to monitor the immune status of patients is available. Given that Torque teno virus (TTV), a known human virome component, has previously been identified as a marker of immunocompetence, it was retrospectively investigated whether TTV viral load may also represent a marker of ability to develop antibody in response to COVID-19-BNT162B2 vaccine in solid organ transplant recipients (SOT). Specifically, 273 samples from 146 kidney and 26 lung transplant recipients after successive doses of vaccine were analyzed. An inverse correlation was observed within the TTV copy number and anti-Spike IgG antibody titer with a progressive decrease in viremia the further away from the transplant date. Analyzing the data obtained after the second dose, a significant difference in TTV copy number between responsive and nonresponsive patients was observed, considering a 5 log10 TTV copies/mL threshold to discriminate between the two groups. Moreover, for 86 patients followed in their response to the second and third vaccination doses a 6 log10 TTV copies/mL threshold was used to predict responsivity to the booster dose. Although further investigation is necessary, possibly extending the analysis to other patient categories, this study suggests that TTV can be used as a good marker of vaccine response in transplant patients.


Asunto(s)
COVID-19 , Infecciones por Virus ADN , Torque teno virus , Humanos , Torque teno virus/genética , Vacunas contra la COVID-19 , Receptores de Trasplantes , Estudios Retrospectivos , Vacuna BNT162 , Seroconversión , Riñón , Pulmón , Carga Viral , ADN Viral
2.
J Pers Med ; 9(3)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374867

RESUMEN

This article aims to discuss the recent development of integrated point-of-care spectroscopic-based technologies that are paving the way for the next generation of diagnostic monitoring technologies in personalized medicine. Focusing on the nuclear magnetic resonance (NMR) technologies as the leading example, we discuss the emergence of -onics technologies (e.g., photonics and electronics) and how their coexistence with -omics technologies (e.g., genomics, proteomics, and metabolomics) can potentially change the future technological landscape of personalized medicine. The idea of an open-source (e.g., hardware and software) movement is discussed, and we argue that technology democratization will not only promote the dissemination of knowledge and inspire new applications, but it will also increase the speed of field implementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA