Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338716

RESUMEN

Transcription factors within microglia contribute to the inflammatory response following intracerebral hemorrhage (ICH). Therefore, we employed bioinformatics screening to identify the potential transcription factor tonicity-responsive enhancer-binding protein (TonEBP) within microglia. Inflammatory stimuli can provoke an elevated expression of TonEBP in microglia. Nevertheless, the expression and function of microglial TonEBP in ICH-induced neuroinflammation remain ambiguous. In our recent research, we discovered that ICH instigated an increased TonEBP in microglia in both human and mouse peri-hematoma brain tissues. Furthermore, our results indicated that TonEBP knockdown mitigates lipopolysaccharide (LPS)-induced inflammation and the activation of NF-κB signaling in microglia. In order to more deeply comprehend the underlying molecular mechanisms of how TonEBP modulates the inflammatory response, we sequenced the transcriptomes of TonEBP-deficient cells and sought potential downstream target genes of TonEBP, such as Pellino-1 (PELI1). PELI has been previously reported to mediate nuclear factor-κB (NF-κB) signaling. Through the utilization of CUT & RUN, a dual-luciferase reporter, and qPCR, we confirmed that TonEBP is the transcription factor of Peli1, binding to the Peli1 promoter. In summary, TonEBP may enhance the LPS-induced inflammation and activation of NF-κB signaling via PELI1.


Asunto(s)
Hemorragia Cerebral , Microglía , Factores de Transcripción NFATC , Animales , Humanos , Ratones , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Sci Rep ; 14(1): 20158, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215129

RESUMEN

The development of intracerebral hemorrhage (ICH) is a dynamic process and intervention during the acute phase of ICH is critical for subsequent recovery. Therefore, it is crucial to screen potential signature genes and therapeutic target genes in the acute phase of ICH. In this study, based on the results of mRNA sequencing in mouse ICH and mRNA sequencing of human ICH from online databases, top five potential signature genes after ICH, Tyrobp, Itgb2, Tlr2, Ptprc and Itgam, were screened. Quantitative PCR results showed higher mRNA expression of Tyrobp, Itgb2, Tlr2, Ptprc, and Itgam in the 1-, 3- and 5-day mouse ICH groups compared to the sham-operated group. Immune infiltration correlation analysis shows that the top-ranked signature gene, Tyrobp, is negatively correlated with M2 macrophages and plasma cells, and Western blot analysis shows higher expression of the Tyrobp protein in the 1-, 3-, and 5-day mouse ICH groups compared to the sham-operated group. Furthermore, immunohistochemistry revealed that TYROBP protein expression was significantly higher in human ICH tissues than in normal brain tissues. Our results suggest that Tyrobp is a signature gene in the acute phase of ICH and may be a potential target for the treatment of the acute phase of ICH.


Asunto(s)
Hemorragia Cerebral , Hemorragia Cerebral/genética , Animales , Humanos , Ratones , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica , Encéfalo/metabolismo , Encéfalo/patología , Transcriptoma , Proteínas Adaptadoras Transductoras de Señales
3.
Transl Pediatr ; 12(4): 681-694, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37181029

RESUMEN

Background: Epilepsy is a chronic disease that is characterized by transient brain dysfunction caused by an abrupt abnormal neuronal discharge. Recent studies have indicated that the pathways related to inflammation and innate immunity play significant roles in the pathogenesis of epilepsy, suggesting an interrelationship between immunity and inflammatory processes and epilepsy. However, the immune-related mechanisms are still not precisely understood; therefore, this study aimed to explore the immune-related mechanisms in epilepsy disorders, highlight the role of immune cells at the molecular level in epilepsy, and provide therapeutic targets for patients with epilepsy. Methods: Brain tissue samples from healthy and epileptic individuals were collected for transcriptome sequencing to identify differentially expressed genes (DEGs) and differentially expressed (DE)-long coding RNAs (lncRNAs). Based on interactions from the miRcode, starBase2.0, miRDB, miRTarBase, TargetScan, and ENCORI databases, a lncRNA-associated competitive endogenous RNA (ceRNA) network was created. Gene ontology and the Kyoto encyclopedia of genes analyses established that the genes in the ceRNA network were mainly enriched in immune-related pathways. Immune cell infiltration, screening, and protein-protein interaction analyses of the immune-related ceRNAs, and correlation analysis between immune-related core messenger RNA (mRNA) and immune cells were also performed. Results: Nine hub genes (EGFR, GRB2, KRAS, FOS, ESR1, MAPK1, MAPK14, MAPK8, and PPARG) were obtained. Also, 38 lncRNAs, one miRNA (hsa-miR-27a-3p), and one mRNA (EGFR) comprised the final core ceRNA network. Mast cells, plasmacytoid dendritic cells, and immature dendritic cells all showed positive correlations with EGFR, while Cluster of differentiation 56 dim natural killer cells (CD56dim natural killer cells) showed negative correlations. Finally, we employed an epilepsy mouse model to validate EGFR, which is consistent with disease progression. Conclusions: In conclusion, the pathophysiology of epilepsy was correlated with EGFR. Thus, EGFR could be a novel biomarker of juvenile focal epilepsies, and our findings provide promising therapeutic targets for epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA