Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Rec ; 23(2): e202200149, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36408911

RESUMEN

Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.

2.
Chem Rec ; 23(1): e202200143, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36285706

RESUMEN

The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7 eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.

3.
Chem Rec ; 22(12): e202200097, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36103617

RESUMEN

Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.

4.
Chem Rec ; 22(7): e202100310, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35138017

RESUMEN

Being one of the foremost enticing and intriguing innovations, heterogeneous photocatalysis has also been used to effectively gather, transform, and conserve sustainable sun's radiation for the production of efficient and clean fossil energy as well as a wide range of ecological implications. The generation of solar fuel-based water splitting and CO2 photoreduction is excellent for generating alternative resources and reducing global warming. Developing an inexpensive photocatalyst can effectively split water into hydrogen (H2 ), oxygen (O2 ) sources, and carbon dioxide (CO2 ) into fuel sources, which is a crucial problem in photocatalysis. The metal-free g-C3 N4 photocatalyst has a high solar fuel generation potential. This review covers the most recent advancements in g-C3 N4 preparation, including innovative design concepts and new synthesis methods, and novel ideas for expanding the light absorption of pure g-C3 N4 for photocatalytic application. Similarly, the main issue concerning research and prospects in photocatalysts based g-C3 N4 was also discussed. The current dissertation provides an overview of comprehensive understanding of the exploitation of the extraordinary systemic and characteristics, as well as the fabrication processes and uses of g-C3 N4 .

5.
Environ Sci Pollut Res Int ; 31(25): 37663-37680, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38780849

RESUMEN

Improving energy content and hydrophobic nature of woody biomass can be pursued through torrefaction. This gives torrefied biomass with a low bulk density, potentially increasing storage and transport costs. To overcome this issue, densifying the torrefied biomass is necessary. However, poor binding of particles makes densification challenging without using a binder. Therefore, the aim of this study was to investigate the physicochemical characteristics and techno-economic aspects of torrefied rubberwood biomass (TRWB) when pelletized using various cassava-based binders at different blending ratios. The selected binders included cassava starch (CS), cassava pulp (CP), and cassava chip (CC). Each binder at 5%, 10%, or 15% (wt.) was mixed with TRWB and water before pelletizing using a flat die machine. The results revealed that pelletizing TRWB with different cassava-based binders at various blending ratios influenced the physicochemical characteristics of the TRWB pellets, particularly dimensions, bulk density, fuel and atomic ratios, and energy content. The TRWB pellets demonstrated energy densities in the range of 7.95-11.39 GJ/m3, and their mechanical durability and fine content fell within acceptable ranges. The TRWB pellets maintained their shape during 120 min of water soaking, with water absorption levels varying by binder dose. The pelletizing ability, material, and energy costs of TRWB pellets depend on binder type and dose. CP can be applied as a binder for pelletizing torrefied rubberwood biomass. However, the mechanical durability of the product needs to be above the user requirement or standard.


Asunto(s)
Biomasa , Manihot , Madera , Manihot/química , Madera/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-37556055

RESUMEN

Biomass as a raw material has profound implications for thermal conversion processes. It is important to study the relationship between kinetic modeling to depict significant importance in thermal processing by estimating volatile yield and reaction performance during biomass decomposition. This work aimed to determine the thermal decomposition reaction kinetics of non-woody (oil palm trunk (OPT)) and woody (rubberwood sawdust (RWS)) biomass. Devolatilization of biomass is determined by the thermogravimetric analysis (TGA) at three different heating rates (10, 20, and 30 °C/min) using nitrogen as inert gas. The kinetic analysis used isoconversion models of Friedman, Ozawa-Flynn-Wall (OFW), and Kissinger-Akahira-Sunose (KAS). The activation energy varied from 218.4 to 303.8 kJ/mol (Friedman), 235.9 to 299.1 kJ/mol (OFW), and 235.8 to 298.9 kJ/mol (KAS) for OPT; and 199.7 to 228.1 kJ/mol (Friedman), 210.6 to 225.6 kJ/mol (OFW), and 210.7 to 225.2 kJ/mol (KAS) for RWS. The kinetic analysis indicated that RWS and OPT had diverse reaction kinetics, which depend on the reaction rate and order of the reaction. Experimental and theoretical conversion data agreed reasonably well, indicating that these results can be used for future OPT and RWS process modeling. Consistency of results is validated using GC-MS equipped with a pyrolyzer.

7.
Environ Sci Pollut Res Int ; 30(60): 125889-125906, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010541

RESUMEN

Production of coffee beans generates various types of biomass that can be applied as bioenergy for drying and roasting the beans. Thus, the aims of this study were to explore the characteristics of coffee biomass pellets (CBPs) produced from coffee cherry pulp (CCP), coffee parchment (CPM), and expired green coffee beans (ECB) by single and co-pelletization. The CBPs were then used to produce the synthesis gas in a downdraft gasifier, and the syngas properties were investigated for further heat applications. The results showed that single and co-pelletization of CCP and CPM performed well. The CBPs had good physiochemical properties in shape, size, and atomic ratios. The higher heating value and energy density of CBPs were 19.25-24.29 MJ/kg and 12.09-14.87 GJ/m3. The ash from CBPs was rich in K2O, CaO and MgO oxides, and the CPM ash had the lowest initial deformation temperature at 1136 °C. The ash samples from CBPs also had different slagging and fouling indexes. The syngas from CBPs mainly contained H2 (6.85-9.30%), CO (12.15-18.85%), and CO2 (10.85-13.75%). The heating value and tar concentration of syngas from CBPs were 3.24-4.32 MJ/m3 and 21.75-30.92 g/m3. The main chemical compounds in tar were styrene, phenol, caffeine, and pyrrole according to GC-MS. These results indicate that CCP and CPM have potential for pelletization and gasification to generate heat needed for coffee bean processing.


Asunto(s)
Calor , Óxidos , Biomasa
8.
Environ Sci Pollut Res Int ; 29(1): 1338-1363, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34355326

RESUMEN

This study investigated experimentally pyrolysis of rubberwood sawdust (RWS), sewage sludge (SS), and their blends (25:75, 50:50, and 75:25 by weight) in an agitated bed pyrolysis reactor. The yields and characteristics of liquid product and biochar were determined for pyrolysis at 450, 500, and 550 °C and were affected both by temperature and feedstock type. The liquid and biochar yields were in the ranges 27.30-52.42 and 21.43-49.66 (wt%). Pyrolysis of RWS at 550 °C provided the highest liquid yield, while SS gave a high biochar yield. Co-pyrolysis of SS with RWS improved yield and quality of liquid and biochar products. The liquid product had 57.54-70.70 wt% of water and a low hydrocarbon content. The higher heating value (HHV) of water-free liquid product was 14.73-22.45 MJ/kg. The major compounds of liquid product included acetic acid, 2-propanone, 1-hydroxy, and phenols according to GC-MS. The biochar from RWS had a high carbon content (83.37 wt%) and a high HHV (33.57 MJ/kg), while SS biochar was mainly ash (67.62 wt%) with low carbon content. The SS biochar also had high contents of Si, Ca, Fe, K, and Mg as determined by XRF. Co-pyrolysis of SS with RWS improved the biochar by increasing its carbon content and reducing ash and inorganic elements. The surface of RWS biochar was more porous, while SS biochar had the larger specific surface according to SEM and BET. Based on these results, co-pyrolysis of 75:25 feedstock mix is recommended for further studies on applications of liquid product and biochar.


Asunto(s)
Pirólisis , Aguas del Alcantarillado , Biocombustibles/análisis , Carbono , Carbón Orgánico , Madera/química
9.
Materials (Basel) ; 15(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35591428

RESUMEN

The objective of this study was to investigate the production and properties of mixed pellets made from rubberwood (Hevea brasiliensis Muell. Arg) and refuse-derived fuel (RDF) waste with no added binder. Three different conditions of mixed pellets were developed to compare their chemical and physical properties to rubberwood pellets. The produced samples were subjected to both ultimate and proximate analyses. The contents of C, H, N, S, and Cl significantly increased with the increasing amount of refuse-derived fuel in the samples, resulting in reduction of the volatile matter. The mechanical durability of the pellet samples ranged between an average value of 98 and 99%. Mixed pellets containing 50% of rubberwood and 50% of refuse-derived fuel have improved heating values by 22.21% compared to rubberwood pellets. Moreover, mixed pellets having 50% of wood and 50% of refuse-derived fuel had the highest density and the highest energy compared to the other samples. Based on the findings of this study, it appears that the manufactured mixed pellets have the potential to be used as high-energy fuel.

10.
J Colloid Interface Sci ; 624: 411-422, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35660909

RESUMEN

Well-organized water splitting semiconducting photocatalyst is an important concept, but stimulating aimed at decisive energy and environmental emergencies. In this context, visible light-based photocatalytic water splitting with low-dimensional semiconducting materials is proposed to produce sustainable energy. Here we optimized the sequential of organic electron-rich heterocyclic monomer namely benzothiadiazole (BTD) quenched within polymeric carbon nitride (PCN) semiconductor via copolymerization, thereby assembling a sanctum of donor-π-acceptor (D-π-A) photocatalysts. The selection of BTD is based on the benzene ring, which consequently anticipating a π cross-linker unit for hydrogen and oxygen evolution. A hydrogen evolution rates (HER) of 88.2 µmol/h for pristine PCN and 744.2 µmol/h for PCN-BTD008 (eight times higher than pure PCN) are observed. Additionally, a remarkable apparent quantum yield (AQY) of about 58.6% at 420 nm has been observed for PCN-BTD008. Likewise, the oxygen evolution rate (OER) data reflect the generation of 0.2 µmol/h1 (visible) and 1.6 µmol/h1 (non-visible) for pure PCN. Though, OER of PCN-BTD008 is found to be 2.2 µmol/h1 (visible) and 14.8 µmol/h1 (non-visible), which are economically better than pure PCN. As such, the results show an important step toward modifying the design and explain a vital part of the D-π-A scheme at a balanced theme for fruitful photocatalysts intended for future demand.

11.
J Colloid Interface Sci ; 627: 621-629, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35872419

RESUMEN

The development of copolymerized carbon nitride (CN)-based photocatalysts may support advances in photocatalytic overall water splitting. However, the recombination of charge carriers is the main bottleneck that reduces its overall photocatalytic activity. To overcome this problem, the construction of heterojunction technology has emerged as an effective approach to reduce the charge carrier recombination, thereby improving charge separation and transport efficiency. In this work, an innovative heterojunction was prepared between Quinolinic acid (QA) modified CN (CN-QAx) and novel nanorod-shaped bismuth vanadate (BiVO4) (BiVO4/CN-QAx) for overall water splitting through a simple in-situ solvent evaporation technique. The obtained results show that the synthesized samples have efficient and improved activities for releasing H2 (862.1 µmol/h) and O2 (31.58 µmol/h) under visible light irradiation. Furthermore, an exceptional apparent quantum yield (AQY) of 64.52 % has been recorded for BiVO4/CN-QA7.0 at 420 nm, which might be due to the substantial isolation of photoinducedcharge carriers. Therefore, this work opens up a new channel toward efficient CN-based photocatalysts in the sustainable energy production processes.

12.
Nanomaterials (Basel) ; 11(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34947595

RESUMEN

Light-driven heterogeneous photocatalysis has gained great significance for generating solar fuel; the challenging charge separation process and sluggish surface catalytic reactions significantly restrict the progress of solar energy conversion using a semiconductor photocatalyst. Herein, we propose a novel and feasible strategy to incorporate dihydroxy benzene (DHB) as a conjugated monomer within the framework of urea containing CN (CNU-DHBx) to tune the electronic conductivity and charge separation due to the aromaticity of the benzene ring, which acts as an electron-donating species. Systematic characterizations such as SPV, PL, XPS, DRS, and TRPL demonstrated that the incorporation of the DHB monomer greatly enhanced the photocatalytic CO2 reduction of CN due to the enhanced charge separation and modulation of the ionic mobility. The significantly enhanced photocatalytic activity of CNU-DHB15.0 in comparison with parental CN was 85 µmol/h for CO and 19.92 µmol/h of the H2 source. It can be attributed to the electron-hole pair separation and enhance the optical adsorption due to the presence of DHB. Furthermore, this remarkable modification affected the chemical composition, bandgap, and surface area, encouraging the controlled detachment of light-produced photons and making it the ideal choice for CO2 photoreduction. Our research findings potentially offer a solution for tuning complex charge separation and catalytic reactions in photocatalysis that could practically lead to the generation of artificial photocatalysts for efficient solar energy into chemical energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA