Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 69(3): 532-545, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32956517

RESUMEN

Δ9 -Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells. Cannabinoid receptors are also physiologically engaged by endogenous cannabinoid compounds, the so-called endocannabinoids. Specifically, the endocannabinoid 2-arachidonoylglycerol has been highlighted as an important modulator of oligodendrocyte (OL) development at embryonic stages and in animal models of demyelination. However, the potential impact of THC exposure on OL lineage progression during the critical periods of postnatal myelination has never been explored. Here, we show that acute THC administration at early postnatal ages in mice enhanced OL development and CNS myelination in the subcortical white matter by promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanistically, THC-induced-myelination was mediated by CB1 and CB2 cannabinoid receptors, as demonstrated by the blockade of THC actions by selective receptor antagonists. Moreover, the THC-mediated modulation of oligodendroglial differentiation relied on the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented the THC effects. Our study identifies THC as an effective pharmacological strategy to enhance oligodendrogenesis and CNS myelination in vivo.


Asunto(s)
Dronabinol , Endocannabinoides , Animales , Dronabinol/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Oligodendroglía , Receptores de Cannabinoides
2.
J Neurosci ; 35(35): 12241-7, 2015 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-26338334

RESUMEN

UNLABELLED: The identification of the molecular network that supports oligodendrocyte (OL) regeneration under demyelinating conditions has been a primary goal for regenerative medicine in demyelinating disorders. We recently described an essential function for TACE/ADAM17 in regulating oligodendrogenesis during postnatal myelination, but it is unknown whether this protein also plays a role in OL regeneration and remyelination under demyelinating conditions. By using genetic mouse models to achieve selective gain- or loss-of-function of TACE or EGFR in OL lineage cells in vivo, we found that TACE is critical for EGFR activation in OLs following demyelination, and therefore, for sustaining OL regeneration and CNS remyelination. TACE deficiency in oligodendrocyte progenitor cells following demyelination disturbs OL lineage cell expansion and survival, leading to a delay in the remyelination process. EGFR overexpression in TACE deficient OLs in vivo restores OL development and postnatal CNS myelination, but also OL regeneration and CNS remyelination following demyelination. Our study reveals an essential function of TACE in supporting OL regeneration and CNS remyelination that may contribute to the design of new strategies for therapeutic intervention in demyelinating disorders by promoting oligodendrocyte regeneration and myelin repair. SIGNIFICANCE STATEMENT: Oligodendrocyte (OL) regeneration has emerged as a promising new approach for the treatment of demyelinating disorders. By using genetic mouse models to selectively delete TACE expression in oligodendrocyte progenitors cells (OPs), we found that TACE/ADAM17 is required for supporting OL regeneration following demyelination. TACE genetic depletion in OPs abrogates EGFR activation in OL lineage cells, and perturbs cell expansion and survival, blunting the process of CNS remyelination. Moreover, EGFR overexpression in TACE-deficient OPs in vivo overcomes the defects in OL development during postnatal development but also OL regeneration during CNS remyelination. Our study identifies TACE as an essential player in OL regeneration that may provide new insights in the development of new strategies for promoting myelin repair in demyelinating disorders.


Asunto(s)
Proteínas ADAM/metabolismo , Sistema Nervioso Central/patología , Enfermedades Desmielinizantes/patología , Regulación de la Expresión Génica/fisiología , Esclerosis Múltiple/patología , Oligodendroglía/fisiología , Regeneración/fisiología , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Proteína ADAM17 , Animales , Antígenos/genética , Antígenos/metabolismo , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/ultraestructura , Proteoglicanos/genética , Proteoglicanos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Regeneración/efectos de los fármacos
3.
J Neurosci ; 34(23): 7917-30, 2014 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899714

RESUMEN

Research on myelination has focused on identifying molecules capable of inducing oligodendrocyte (OL) differentiation in an effort to develop strategies that promote functional myelin regeneration in demyelinating disorders. Here, we show that transforming growth factor ß (TGFß) signaling is crucial for allowing oligodendrocyte progenitor (OP) cell cycle withdrawal, and therefore, for oligodendrogenesis and postnatal CNS myelination. Enhanced oligodendrogenesis and subcortical white matter (SCWM) myelination was detected after TGFß gain of function, while TGFß receptor II (TGFß-RII) deletion in OPs prevents their development into mature myelinating OLs, leading to SCWM hypomyelination in mice. TGFß signaling modulates OP cell cycle withdrawal and differentiation through the transcriptional modulation of c-myc and p21 gene expression, mediated by the interaction of SMAD3/4 with Sp1 and FoxO1 transcription factors. Our study is the first to demonstrate an autonomous and crucial role of TGFß signaling in OL development and CNS myelination, and may provide new avenues in the treatment of demyelinating diseases.


Asunto(s)
Ciclo Celular/fisiología , Sistema Nervioso Central/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Benzamidas/farmacología , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Central/citología , Dioxoles/farmacología , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína smad3/genética , Proteína smad3/metabolismo , Células Madre/efectos de los fármacos
4.
J Neurosci ; 34(36): 11884-96, 2014 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186737

RESUMEN

Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination.


Asunto(s)
Proteínas ADAM/metabolismo , Encéfalo/metabolismo , Vaina de Mielina/metabolismo , Neurogénesis , Oligodendroglía/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Línea Celular , Linaje de la Célula , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Locomoción , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Factor de Crecimiento Transformador alfa/metabolismo
5.
J Neurosci ; 32(47): 16651-65, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175820

RESUMEN

The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB(1) receptor, by preventing Satb2 (special AT-rich binding protein 2)-mediated repression, increased Ctip2 (COUP-TF interacting protein 2) promoter activity, and Ctip2-positive neuron generation. Unbalanced neurogenic fate determination found in complete CB(1)(-/-) mice and in glutamatergic neuron-specific Nex-CB(1)(-/-) mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB(1) receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB(1) receptor contributes to the generation of deep-layer cortical neurons by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Neuronas Motoras/fisiología , Células Piramidales/fisiología , Tractos Piramidales/fisiología , Receptor Cannabinoide CB1/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Conducta Animal/fisiología , Proliferación Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Confocal , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Proteína Quinasa C/metabolismo , Tractos Piramidales/citología , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
J Biol Chem ; 287(2): 1198-209, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22102284

RESUMEN

The endocannabinoid system is known to regulate neural progenitor (NP) cell proliferation and neurogenesis. In particular, CB(2) cannabinoid receptors have been shown to promote NP proliferation. As CB(2) receptors are not expressed in differentiated neurons, CB(2)-selective agonists are promising candidates to manipulate NP proliferation and indirectly neurogenesis by overcoming the undesired psychoactive effects of neuronal CB(1) cannabinoid receptor activation. Here, by using NP cells, brain organotypic cultures, and in vivo animal models, we investigated the signal transduction mechanism involved in CB(2) receptor-induced NP cell proliferation and neurogenesis. Exposure of hippocampal HiB5 NP cells to the CB(2) receptor-selective agonist HU-308 led to the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, which, by inhibiting its downstream target p27Kip1, induced NP proliferation. Experiments conducted with the CB(2) receptor-selective antagonist SR144528, inhibitors of the PI3K/Akt/mTORC1 axis, and CB(2) receptor transient-transfection vector further supported that CB(2) receptors control NP cell proliferation via activation of mTORC1 signaling. Likewise, CB(2) receptor engagement induced cell proliferation in an mTORC1-dependent manner both in embryonic cortical slices and in adult hippocampal NPs. Thus, HU-308 increased ribosomal protein S6 phosphorylation and 5-bromo-2'-deoxyuridine incorporation in wild-type but not CB(2) receptor-deficient NPs of the mouse subgranular zone. Moreover, adult hippocampal NP proliferation induced by HU-308 and excitotoxicity was blocked by the mTORC1 inhibitor rapamycin. Altogether, these findings provide a mechanism of action and a rationale for the use of nonpsychotomimetic CB(2) receptor-selective ligands as a novel strategy for the control of NP cell proliferation and neurogenesis.


Asunto(s)
Proliferación Celular , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Proteínas/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/fisiología , Animales , Canfanos/farmacología , Cannabinoides/farmacología , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Hipocampo/citología , Inmunosupresores/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Células-Madre Neurales/citología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas/antagonistas & inhibidores , Proteínas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/farmacología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/genética , Proteína S6 Ribosómica/genética , Proteína S6 Ribosómica/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
7.
Int J Neuropsychopharmacol ; 16(6): 1407-19, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23298518

RESUMEN

Cannabidiol (CBD), the main non-psychotomimetic component of the plant Cannabis sativa, exerts therapeutically promising effects on human mental health such as inhibition of psychosis, anxiety and depression. However, the mechanistic bases of CBD action are unclear. Here we investigate the potential involvement of hippocampal neurogenesis in the anxiolytic effect of CBD in mice subjected to 14 d chronic unpredictable stress (CUS). Repeated administration of CBD (30 mg/kg i.p., 2 h after each daily stressor) increased hippocampal progenitor proliferation and neurogenesis in wild-type mice. Ganciclovir administration to GFAP-thymidine kinase (GFAP-TK) transgenic mice, which express thymidine kinase in adult neural progenitor cells, abrogated CBD-induced hippocampal neurogenesis. CBD administration prevented the anxiogenic effect of CUS in wild type but not in GFAP-TK mice as evidenced in the novelty suppressed feeding test and the elevated plus maze. This anxiolytic effect of CBD involved the participation of the CB1 cannabinoid receptor, as CBD administration increased hippocampal anandamide levels and administration of the CB1-selective antagonist AM251 prevented CBD actions. Studies conducted with hippocampal progenitor cells in culture showed that CBD promotes progenitor proliferation and cell cycle progression and mimics the proliferative effect of CB1 and CB2 cannabinoid receptor activation. Moreover, antagonists of these two receptors or endocannabinoid depletion by fatty acid amide hydrolase overexpression prevented CBD-induced cell proliferation. These findings support that the anxiolytic effect of chronic CBD administration in stressed mice depends on its proneurogenic action in the adult hippocampus by facilitating endocannabinoid-mediated signalling.


Asunto(s)
Ansiolíticos/uso terapéutico , Cannabidiol/uso terapéutico , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Animales , Ansiolíticos/farmacología , Bromodesoxiuridina/metabolismo , Canfanos/farmacología , Cannabidiol/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Alimentaria/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Piperidinas/farmacología , Pirazoles/farmacología , Rimonabant , Estrés Psicológico/patología , Timidina Quinasa/metabolismo
8.
Brain ; 134(Pt 1): 119-36, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20929960

RESUMEN

Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntington's disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropathology and molecular pathology of the disease. Moreover, pharmacological administration of the cannabinoid Δ(9)-tetrahydrocannabinol to mice expressing human mutant huntingtin exon 1 exerted a therapeutic effect and ameliorated those parameters. Experiments conducted in striatal cells show that the mutant huntingtin-dependent downregulation of the receptors involves the control of the type 1 cannabinoid receptor gene promoter by repressor element 1 silencing transcription factor and sensitizes cells to excitotoxic damage. We also provide in vitro and in vivo evidence that supports type 1 cannabinoid receptor control of striatal brain-derived neurotrophic factor expression and the decrease in brain-derived neurotrophic factor levels concomitant with type 1 cannabinoid receptor loss, which may contribute significantly to striatal damage in Huntington's disease. Altogether, these results support the notion that downregulation of type 1 cannabinoid receptors is a key pathogenic event in Huntington's disease, and suggest that activation of these receptors in patients with Huntington's disease may attenuate disease progression.


Asunto(s)
Cuerpo Estriado/metabolismo , Enfermedad de Huntington/genética , Neuronas/metabolismo , Receptor Cannabinoide CB1/genética , Análisis de Varianza , Animales , Western Blotting , Supervivencia Celular , Dronabinol/farmacología , Hormona Liberadora de Hormona del Crecimiento/análogos & derivados , Enfermedad de Huntington/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de Desempeño de Rotación con Aceleración Constante
9.
Front Neuroanat ; 16: 1030060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387996

RESUMEN

Adult oligodendrocyte progenitor cells (OPCs) give rise to myelinating oligodendrocytes through life and play crucial roles in brain homeostasis and plasticity during health and disease. Cannabinoid compounds acting through CB1 receptors promote the proliferation and differentiation of OPCs in vitro and facilitate developmental myelination and myelin repair in vivo. However, CB1 receptor expression in adult OPCs in situ has not been corroborated by anatomical studies and the contribution of this receptor population to the (re)myelination effects of cannabinoids remains a matter of debate. Using electron microscopy methods applied to NG2-EYFP reporter mice we assessed the localization of CB1 receptors in OPCs of the adult mouse hippocampus. To control for the specificity of CB1 receptor immunostaining we generated transgenic mice bearing EYFP expression in NG2 glia and wild-type (NG2-EYFP-CB1 +/+) and knockout (NG2-EYFP-CB1 -/-) for CB1 receptors. Double immunogold and immunoperoxidase labeling for CB1 and EYFP, respectively, revealed that CB1 receptors are present in a low proportion of NG2 positive profiles within hippocampal stratum radiatum of NG2-EYFP-CB1 +/+ mice. Quantitative analysis of immunogold particles in synaptic structures and NG2 profiles showed that CB1 receptors are expressed at lower density in adult OPCs than in glutamatergic cells of the rodent hippocampus. These results highlight the presence of CB1 receptors in adult OPCs thus providing an anatomical substrate for the remyelination promoting effects of cannabinoids and open a novel perspective on the roles of the endocannabinoid system in brain physiology through the modulation of NG2 glia.

10.
Cell Death Dis ; 13(7): 585, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798697

RESUMEN

Cannabinoids are known to modulate oligodendrogenesis and developmental CNS myelination. However, the cell-autonomous action of these compounds on oligodendroglial cells in vivo, and the molecular mechanisms underlying these effects have not yet been studied. Here, by using oligodendroglial precursor cell (OPC)-targeted genetic mouse models, we show that cannabinoid CB1 receptors exert an essential role in modulating OPC differentiation at the critical periods of postnatal myelination. We found that selective genetic inactivation of CB1 receptors in OPCs in vivo perturbs oligodendrogenesis and postnatal myelination by altering the RhoA/ROCK signaling pathway, leading to hypomyelination, and motor and cognitive alterations in young adult mice. Conversely, pharmacological CB1 receptor activation, by inducing E3 ubiquitin ligase-dependent RhoA proteasomal degradation, promotes oligodendrocyte development and CNS myelination in OPCs, an effect that was not evident in OPC-specific CB1 receptor-deficient mice. Moreover, pharmacological inactivation of ROCK in vivo overcomes the defects in oligodendrogenesis and CNS myelination, and behavioral alterations found in OPC-specific CB1 receptor-deficient mice. Overall, this study supports a cell-autonomous role for CB1 receptors in modulating oligodendrogenesis in vivo, which may have a profound impact on the scientific knowledge and therapeutic manipulation of CNS myelination by cannabinoids.


Asunto(s)
Cannabinoides , Células Precursoras de Oligodendrocitos , Receptor Cannabinoide CB1 , Animales , Cannabinoides/farmacología , Diferenciación Celular/fisiología , Silenciador del Gen , Ratones , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Receptor Cannabinoide CB1/metabolismo
11.
Br J Pharmacol ; 178(20): 4176-4192, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216154

RESUMEN

BACKGROUND AND PURPOSE: Research on demyelinating disorders aims to find novel molecules that are able to induce oligodendrocyte precursor cell differentiation to promote central nervous system remyelination and functional recovery. Δ9 -Tetrahydrocannabinol (THC), the most prominent active constituent of the hemp plant Cannabis sativa, confers neuroprotection in animal models of demyelination. However, the possible effect of THC on myelin repair has never been studied. EXPERIMENTAL APPROACH: By using oligodendroglia-specific reporter mouse lines in combination with two models of toxin-induced demyelination, we analysed the effect of THC on the processes of oligodendrocyte regeneration and functional remyelination. KEY RESULTS: We show that THC administration enhanced oligodendrocyte regeneration, white matter remyelination and motor function recovery. THC also promoted axonal remyelination in organotypic cerebellar cultures. THC remyelinating action relied on the induction of oligodendrocyte precursor differentiation upon cell cycle exit and via CB1 cannabinoid receptor activation. CONCLUSIONS AND IMPLICATIONS: Overall, our study identifies THC administration as a promising pharmacological strategy aimed to promote functional CNS remyelination in demyelinating disorders.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Sustancia Blanca , Animales , Diferenciación Celular , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Dronabinol/farmacología , Ratones , Oligodendroglía
12.
Brain ; 132(Pt 11): 3152-64, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19805493

RESUMEN

Cannabinoid-derived drugs are promising agents for the development of novel neuroprotective strategies. Activation of neuronal CB(1) cannabinoid receptors attenuates excitotoxic glutamatergic neurotransmission, triggers prosurvival signalling pathways and palliates motor symptoms in animal models of neurodegenerative disorders. However, in Huntington's disease there is a very early downregulation of CB(1) receptors in striatal neurons that, together with the undesirable psychoactive effects triggered by CB(1) receptor activation, foster the search for alternative pharmacological treatments. Here, we show that CB(2) cannabinoid receptor expression increases in striatal microglia of Huntington's disease transgenic mouse models and patients. Genetic ablation of CB(2) receptors in R6/2 mice, that express human mutant huntingtin exon 1, enhanced microglial activation, aggravated disease symptomatology and reduced mice lifespan. Likewise, induction of striatal excitotoxicity in CB(2) receptor-deficient mice by quinolinic acid administration exacerbated brain oedema, microglial activation, proinflammatory-mediator state and medium-sized spiny neuron degeneration. Moreover, administration of CB(2) receptor-selective agonists to wild-type mice subjected to excitotoxicity reduced neuroinflammation, brain oedema, striatal neuronal loss and motor symptoms. Studies on ganciclovir-induced depletion of astroglial proliferation in transgenic mice expressing thymidine kinase under the control of the glial fibrillary acidic protein promoter excluded the participation of proliferating astroglia in CB(2) receptor-mediated actions. These findings support a pivotal role for CB(2) receptors in attenuating microglial activation and preventing neurodegeneration that may pave the way to new therapeutic strategies for neuroprotection in Huntington's disease as well as in other neurodegenerative disorders with a significant excitotoxic component.


Asunto(s)
Enfermedad de Huntington , Microglía/metabolismo , Fármacos Neuroprotectores/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Antibacterianos/farmacología , Biomarcadores/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Minociclina/farmacología , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácido Quinolínico/farmacología , Receptor Cannabinoide CB2/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Convulsiones/fisiopatología
13.
Eur Arch Psychiatry Clin Neurosci ; 259(7): 371-82, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19588184

RESUMEN

During brain development, functional neurogenesis is achieved by the concerted action of various steps that include the expansion of progenitor cells, neuronal specification, and establishment of appropriate synapses. Brain patterning and regionalization is regulated by a variety of extracellular signals and morphogens that, together with neuronal activity, orchestrate and regulate progenitor proliferation, differentiation, and neuronal maturation. In the adult brain, CB(1) cannabinoid receptors are expressed at very high levels in selective areas and are engaged by endocannabinoids, which act as retrograde messengers controlling neuronal function and preventing excessive synaptic activity. In addition, the endocannabinoid system is present at early developmental stages of nervous system formation. Recent studies have provided novel information on the role of this endogenous neuromodulatory system in the control of neuronal specification and maturation. Thus, cannabinoid receptors and locally produced endocannabinoids regulate neural progenitor proliferation and pyramidal specification of projecting neurons. CB(1) receptors also control axonal navigation, migration, and positioning of interneurons and excitatory neurons. Loss of function studies by genetic ablation or pharmacological blockade of CB(1) receptors interferes with long-range subcortical projections and, likewise, prenatal cannabinoid exposure induces different functional alterations in the adult brain. Potential implications of these new findings, such as the participation of the endocannabinoid system in the pathogenesis of neurodevelopmental disorders (e.g., schizophrenia) and the regulation of neurogenesis in brain depression, are discussed herein.


Asunto(s)
Encéfalo , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Neurogénesis/fisiología , Trastornos Psicóticos , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Proliferación Celular , Cognición/fisiología , Humanos , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/fisiopatología , Receptores de Cannabinoides/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología
14.
Biochem Pharmacol ; 157: 85-96, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30118663

RESUMEN

The endocannabinoid system exerts a crucial neuromodulatory role in many brain areas that is essential for proper regulation of neuronal activity. The role of cannabinoid signalling controlling neuronal activity in the adult brain is also evident when considering its contribution to adult brain insults or neurodegenerative diseases. In the context of brain genetic or acquired encephalopathies administration of cannabinoid-based molecules has demonstrated to exert symptomatic relief and hence, they are proposed as new potential therapeutic compounds. This review article summarizes the main evidences indicating the beneficial action of cannabinoid-derived molecules in preclinical models of neonatal hypoxia/ischemic damage. In a second part, we discuss the available evidences of therapeutic actions of cannabidiol in children with refractory epilepsy syndromes. Finally, we discuss the current view of cannabinoid signalling mechanisms active in the immature brain that affect in neural cell fate and can contribute to long-term neural cell plasticity.


Asunto(s)
Encéfalo/metabolismo , Cannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Epilepsia/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Humanos , Hipoxia-Isquemia Encefálica/etiología , Recién Nacido , Receptores de Cannabinoides/metabolismo , Transducción de Señal
15.
J Neurosci ; 26(5): 1551-61, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16452678

RESUMEN

Endocannabinoids exert an important neuromodulatory role via presynaptic cannabinoid CB1 receptors and may also participate in the control of neural cell death and survival. The function of the endocannabinoid system has been extensively studied in differentiated neurons, but its potential role in neural progenitor cells remains to be elucidated. Here we show that the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase are expressed, both in vitro and in vivo, in postnatal radial glia (RC2+ cells) and in adult nestin type I (nestin(+)GFAP+) neural progenitor cells. Cell culture experiments show that CB1 receptor activation increases progenitor proliferation and differentiation into astroglial cells in vitro. In vivo analysis evidences that, in postnatal CB1(-/-) mouse brain, progenitor proliferation and astrogliogenesis are impaired. Likewise, in adult CB1-deficient mice, neural progenitor proliferation is decreased but is increased in fatty acid amide hydrolase-deficient mice. In addition, endocannabinoid signaling controls neural progenitor differentiation in the adult brain by promoting astroglial differentiation of newly born cells. These results show a novel physiological role of endocannabinoids, which constitute a new family of signaling cues involved in the regulation of neural progenitor cell function.


Asunto(s)
Amidohidrolasas/metabolismo , Astrocitos/citología , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Neuronas/citología , Receptor Cannabinoide CB1/metabolismo , Células Madre/fisiología , Amidohidrolasas/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Benzoxazinas , Cannabinoides/farmacología , Carbamatos/farmacología , Diferenciación Celular , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Noqueados , Morfolinas/farmacología , Naftalenos/farmacología , Proteínas del Tejido Nervioso/metabolismo , Nestina , Ratas , Receptor Cannabinoide CB1/genética , Células Madre/citología , Células Madre/metabolismo
16.
Neuroscientist ; 13(2): 109-14, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404371

RESUMEN

The endocannabinoid system exerts an important neuromodulatory function in different brain areas and is also known to be involved in the regulation of neural cell fate. Thus, CB(1) cannabinoid receptors are neuroprotective in different models of brain injury, and their expression is altered in various neurodegenerative diseases. Recent findings have demonstrated the presence of a functional endocannabinoid system in neural progenitor cells that participates in the regulation of cell proliferation and differentiation. In this Research Update, the authors address the experimental evidence regarding the regulatory role of cannabinoids in neurogenesis and analyze them in the context of those pathological disorders in which cannabinoid function and altered neuronal or glial generation is most relevant, for example, stroke and multiple sclerosis.


Asunto(s)
Encefalopatías/metabolismo , Encéfalo/metabolismo , Moduladores de Receptores de Cannabinoides/metabolismo , Proliferación Celular/efectos de los fármacos , Endocannabinoides , Regeneración Nerviosa/fisiología , Receptor Cannabinoide CB1/metabolismo , Animales , Encéfalo/fisiopatología , Encefalopatías/tratamiento farmacológico , Encefalopatías/fisiopatología , Moduladores de Receptores de Cannabinoides/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Humanos , Regeneración Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Fármacos Neuroprotectores/farmacología , Receptor Cannabinoide CB1/genética , Células Madre/efectos de los fármacos , Células Madre/metabolismo
17.
FASEB J ; 20(13): 2405-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17015409

RESUMEN

Cannabinoids, the active components of marijuana and their endogenous counterparts, act on the brain and many other organs through the widely expressed CB1 cannabinoid receptor. In contrast, the CB2 cannabinoid receptor is abundant in the immune system and shows a restricted expression pattern in brain cells. CB2-selective agonists are, therefore, very attractive therapeutic agents as they do not cause CB1-mediated psychoactive effects. CB2 receptor expression in brain has been partially examined in differentiated cells, while its presence and function in neural progenitor cells remain unknown. Here we show that the CB2 receptor is expressed, both in vitro and in vivo, in neural progenitors from late embryonic stages to adult brain. Selective pharmacological activation of the CB2 receptor in vitro promotes neural progenitor cell proliferation and neurosphere generation, an action that is impaired in CB2-deficient cells. Accordingly, in vivo experiments evidence that hippocampal progenitor proliferation is increased by administration of the CB2-selective agonist HU-308. Moreover, impaired progenitor proliferation was observed in CB2-deficient mice both in normal conditions and on kainate-induced excitotoxicity. These findings provide a novel physiological role for the CB2 cannabinoid receptor and open a novel therapeutic avenue for manipulating neural progenitor cell fate.


Asunto(s)
Cannabinoides/farmacología , Diferenciación Celular/fisiología , Neuronas/fisiología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Cartilla de ADN , Embrión de Mamíferos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Receptor Cannabinoide CB2/deficiencia , Receptor Cannabinoide CB2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/efectos de los fármacos
18.
Clin Drug Investig ; 27(4): 227-32, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17358094

RESUMEN

BACKGROUND: The long-term effects of ossein-hydroxyapatite compound (OHC), a drug used for osteoporosis prevention, have not been previously reported. The aim of this study was to assess the long-term efficacy of OHC in postmenopausal women with bone mineral density (BMD) in the osteopenia range. METHODS: We performed a retrospective 4-year follow-up study in a primary-care setting to assess changes in BMD in a cohort of 112 postmenopausal women included in an osteoporosis programme that included health and dietary advice and who were treated with OHC 1660mg every 12 hours. BMD was measured annually in the distal part of the forearm, with T- and Z-score values being calculated for trabecular and total bone. RESULTS: A progressive and statistically significant increase in BMD was observed in trabecular and total T- and Z-score mean values. At baseline, mean +/- SD trabecular T- and Z-scores were -1.27 +/- 0.7 and -1.03 +/- 0.7, respectively, and -0.86 +/- 0.7 and -0.62 +/- 0.7, respectively, at the end of the 4-year follow-up period (both p < 0.0001). Mild constipation was observed in 3.2% of patients during the follow-up period. CONCLUSION: Ossein-hydroxyapatite compound could be an effective and safe agent for the prevention of bone loss in postmenopausal osteopenic women, with significant increases in BMD being observed in this group of patients.


Asunto(s)
Durapatita/uso terapéutico , Osteoporosis/prevención & control , Posmenopausia , Densidad Ósea , Estudios de Cohortes , Durapatita/efectos adversos , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Osteoporosis/tratamiento farmacológico
19.
FASEB J ; 19(12): 1704-6, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16037095

RESUMEN

The discovery of multipotent neural progenitor (NP) cells has provided strong support for the existence of neurogenesis in the adult brain. However, the signals controlling NP proliferation remain elusive. Endocannabinoids, the endogenous counterparts of marijuana-derived cannabinoids, act as neuromodulators via presynaptic CB1 receptors and also control neural cell death and survival. Here we show that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo. Specifically, NPs produce endocannabinoids and express the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase (FAAH). CB1 receptor activation promotes cell proliferation and neurosphere generation, an action that is abrogated in CB1-deficient NPs. Accordingly, proliferation of hippocampal NPs is increased in FAAH-deficient mice. Our results demonstrate that endocannabinoids constitute a new group of signaling cues that regulate NP proliferation and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.


Asunto(s)
Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Neuronas/metabolismo , Células Madre/citología , Amidohidrolasas/genética , Animales , Western Blotting , Bromodesoxiuridina/farmacología , Moduladores de Receptores de Cannabinoides/metabolismo , Cannabinoides/metabolismo , Proliferación Celular , Hipocampo/metabolismo , Humanos , Antígeno Ki-67/biosíntesis , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Factores de Tiempo
20.
Curr Med Res Opin ; 29(4): 291-303, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23252877

RESUMEN

OBJECTIVE: A systematic review was conducted to analyze the tolerability of several oral iron supplements based on data obtained in available publications and to report the incidence of adverse effects (AEs) for each supplement both overall and gastrointestinal. METHODS: Electronic databases - Medline, the Cochrane Library, and Embase were searched for studies published up to January 2009. Clinical or observational studies reporting data on the tolerability of oral iron supplements were included. Results were described statistically and a quasi-binomial logistic regression model was developed to evaluate and compare the tolerability of the supplements studied. RESULTS: For this review 111 studies were included, with data on 10,695 patients. Ferrous sulfate with mucoproteose had the lowest incidence of AEs (4.1% for overall AEs, 3.7% for gastrointestinal AEs [GAEs]) and was used as the reference supplement in the regression model. Incidence rates of overall AEs for the other supplements were 7.3% for iron protein succinylate [GAEs: 7%; OR for AE compared to the reference supplement, 1.96], 23.5% for ferrous glycine sulfate [GAEs: 18.5%; OR: 5.90], 30.9% for ferrous gluconate [GAEs: 29.9%; OR: 11.06], 32.3% for ferrous sulfate without mucoproteose [GAEs: 30.2%; OR: 11.21], and 47.0% for ferrous fumarate [GAEs: 43.4%; OR: 19.87]. The differences in incidence of AEs between extended-release ferrous sulfate with mucoproteose and all other supplements except iron protein succinylate were statistically significant at p < 0.001. These findings are subject to some limitations as the designs and methodologies of the studies included show heterogeneity among them that has partially been counteracted by the large sample size provided by the substantial number of trials, which is considered a strength in tolerability studies. CONCLUSION: Extended-release ferrous sulfate with mucoproteose appears to be the best tolerated of the different oral iron supplements evaluated.


Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Suplementos Dietéticos/efectos adversos , Compuestos Férricos/efectos adversos , Compuestos Ferrosos/efectos adversos , Compuestos Férricos/administración & dosificación , Compuestos Ferrosos/administración & dosificación , Glicina/efectos adversos , Glicina/análogos & derivados , Humanos , Metaloproteínas/efectos adversos , Succinatos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA