Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 32(3): 736-743, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33499589

RESUMEN

The discrimination of d-galactosamine (G), representative of the amino-sugar class of compounds, has been probed through nano-ESI-FT-ICR mass spectrometry by isolating the relevant [C·H·G]+ proton-bound complexes with the enantiomers of the cyclochiral resorcin[4]arene C and allowing them to react toward three primary amines (B = EtNH2, iPrNH2, and (R)- and (S)-sBuNH2). The system under investigation presents several features that help to unveil the behavior of unprotected G in such a supramolecular architecture: (i) the hydrophobic derivatization of the C convex side forces the polar guest G to be coordinated by the cyclochiral concave region; (ii) protonated d-galactosamine exists as an anomeric mixture, dynamically interconverting throughout the experimental time-window; and (iii) different basicities of B allow the experiment to subtly tune the reactivity of the [C·H·G]+ complexes. Three [C·H·G]+ aggregate-types were found to exist, differing in both their origin and reactivity. The most reactive adducts ([C·H·G]ESI+), generated in the electrospray environment, undergo a G-to-B ligand exchange in competition with a partial isomerization to the unreactive [C·H·G]GAS+-type complexes. Finally, the poorly reactive [C·H·G]SOL+ aggregates are formed in solution over an hours-long time scale. A cyclochirality effect on the reactivity was found to depend on the considered [C·H·G]+ aggregate-type.

2.
J Mass Spectrom ; 47(1): 72-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22282092

RESUMEN

The effect of cyclochirality of rccc-2,8,14,20-tetra-n-decyl-4,10,16,22-tetra-O-methylresorcin[4]arene (C) on the enantiodiscrimination of a number of chiral bidentate and tridentate aromatic and aliphatic biomolecules (G) has been investigated by nano-electrospray ionization (nano-ESI)-Fourier transform ion cyclotron resonance mass spectrometry. The experimental approach is based on the formation of diastereomeric proton-bound [C·H·G](+) complexes by nano-ESI of solutions containing an equimolar amount of quasi-enantiomers (C) together with the chiral guest (G) and the subsequent measurement of the rate of the G substitution by the attack of several achiral and chiral amines. In general, the heterochiral complexes react faster than the homochiral ones, except when G is an aminoalcoholic neurotransmitter whose complexes, beyond that, exhibit the highest enantioselectivity. The kinetic results were further supported by both collision-induced dissociation experiments on some of the relevant [C(2) ·H·G](+) three-body species and Density functional theory (DFT) calculations performed on the most selective systems.


Asunto(s)
Calixarenos/química , Fenilalanina/análogos & derivados , Espectrometría de Masa por Ionización de Electrospray/métodos , Análisis de Fourier , Gases/química , Cinética , Compuestos Macrocíclicos/química , Modelos Moleculares , Fenilalanina/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA