Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genes (Basel) ; 15(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927741

RESUMEN

Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (Adm), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the molecular and cellular mechanisms through which Adm influences BPD pathogenesis using a lipopolysaccharide (LPS)-induced model of experimental BPD in mice. Bulk RNA sequencing of Adm-sufficient (wild-type or Adm+/+) and Adm-haplodeficient (Adm+/-) mice lungs, integrated with single-cell RNA sequencing data, revealed distinct gene expression patterns and cell type alterations associated with Adm deficiency and LPS exposure. Notably, computational integration with cell atlas data revealed that Adm-haplodeficient mouse lungs exhibited gene expression signatures characteristic of increased inflammation, natural killer (NK) cell frequency, and decreased endothelial cell and type II pneumocyte frequency. Furthermore, in silico human BPD patient data analysis supported our cell type frequency finding, highlighting elevated NK cells in BPD infants. These results underscore the protective role of Adm in experimental BPD and emphasize that it is a potential therapeutic target for BPD infants with an inflammatory phenotype.


Asunto(s)
Adrenomedulina , Displasia Broncopulmonar , Adrenomedulina/genética , Adrenomedulina/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/metabolismo , Animales , Ratones , Humanos , Análisis de Secuencia de ARN/métodos , Modelos Animales de Enfermedad , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Transcriptoma
2.
Mol Metab ; 54: 101330, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34500108

RESUMEN

OBJECTIVE: The effectiveness of bariatric surgery in restoring ß-cell function has been described in type-2 diabetes (T2D) patients and animal models for years, whereas the mechanistic underpinnings are largely unknown. The possibility of vertical sleeve gastrectomy (VSG) to rescue far-progressed, clinically-relevant T2D and to promote ß-cell recovery has not been investigated on a single-cell level. Nevertheless, characterization of the heterogeneity and functional states of ß-cells after VSG is a fundamental step to understand mechanisms of glycaemic recovery and to ultimately develop alternative, less-invasive therapies. METHODS: We performed VSG in late-stage diabetic db/db mice and analyzed the islet transcriptome using single-cell RNA sequencing (scRNA-seq). Immunohistochemical analyses and quantification of ß-cell area and proliferation complement our findings from scRNA-seq. RESULTS: We report that VSG was superior to calorie restriction in late-stage T2D and rapidly restored normoglycaemia in morbidly obese and overt diabetic db/db mice. Single-cell profiling of islets of Langerhans showed that VSG induced distinct, intrinsic changes in the ß-cell transcriptome, but not in that of α-, δ-, and PP-cells. VSG triggered fast ß-cell redifferentiation and functional improvement within only two weeks of intervention, which is not seen upon calorie restriction. Furthermore, VSG expanded ß-cell area by means of redifferentiation and by creating a proliferation competent ß-cell state. CONCLUSION: Collectively, our study reveals the superiority of VSG in the remission of far-progressed T2D and presents paths of ß-cell regeneration and molecular pathways underlying the glycaemic benefits of VSG.


Asunto(s)
Diabetes Mellitus Tipo 2/cirugía , Gastrectomía , Células Secretoras de Insulina/patología , Animales , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos
3.
Curr Biol ; 30(6): 1142-1151.e6, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32109392

RESUMEN

Most plane-polarized tissues are formed by identically oriented cells [1, 2]. A notable exception occurs in the vertebrate vestibular system and lateral-line neuromasts, where mechanosensory hair cells orient along a single axis but in opposite directions to generate bipolar epithelia [3-5]. In zebrafish neuromasts, pairs of hair cells arise from the division of a non-sensory progenitor [6, 7] and acquire opposing planar polarity via the asymmetric expression of the polarity-determinant transcription factor Emx2 [8-11]. Here, we reveal the initial symmetry-breaking step by decrypting the developmental trajectory of hair cells using single-cell RNA sequencing (scRNA-seq), diffusion pseudotime analysis, lineage tracing, and mutagenesis. We show that Emx2 is absent in non-sensory epithelial cells, begins expression in hair-cell progenitors, and is downregulated in one of the sibling hair cells via signaling through the Notch1a receptor. Analysis of Emx2-deficient specimens, in which every hair cell adopts an identical direction, indicates that Emx2 asymmetry does not result from auto-regulatory feedback. These data reveal a two-tiered mechanism by which the symmetric monodirectional ground state of the epithelium is inverted by deterministic initiation of Emx2 expression in hair-cell progenitors and a subsequent stochastic repression of Emx2 in one of the sibling hair cells breaks directional symmetry to establish planar bipolarity.


Asunto(s)
Embrión no Mamífero/embriología , Proteínas de Homeodominio/genética , Sistema de la Línea Lateral/embriología , Proteínas del Tejido Nervioso/genética , Receptor Notch1/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Front Immunol ; 10: 1515, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354705

RESUMEN

Recent advances in cytometry have radically altered the fate of single-cell proteomics by allowing a more accurate understanding of complex biological systems. Mass cytometry (CyTOF) provides simultaneous single-cell measurements that are crucial to understand cellular heterogeneity and identify novel cellular subsets. High-dimensional CyTOF data were traditionally analyzed by gating on bivariate dot plots, which are not only laborious given the quadratic increase of complexity with dimension but are also biased through manual gating. This review aims to discuss the impact of new analysis techniques for in-depths insights into the dynamics of immune regulation obtained from static snapshot data and to provide tools to immunologists to address the high dimensionality of their single-cell data.


Asunto(s)
Algoritmos , Biología Computacional , Citometría de Flujo , Análisis de la Célula Individual , Humanos
5.
Nat Med ; 25(7): 1153-1163, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209336

RESUMEN

Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.


Asunto(s)
Asma/patología , Pulmón/citología , Adulto , Anciano , Linfocitos T CD4-Positivos/fisiología , Comunicación Celular , Células Epiteliales/inmunología , Células Epiteliales/fisiología , Femenino , Estudio de Asociación del Genoma Completo , Células Caliciformes/metabolismo , Humanos , Pulmón/inmunología , Pulmón/patología , Masculino , Metaplasia , Persona de Mediana Edad , Células Th2/fisiología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA