Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Bot ; 110(2): e16115, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36462152

RESUMEN

PREMISE: Riparian plants can exhibit intraspecific phenotypic variability across the landscape related to temperature and flooding gradients. Phenotypes that vary across a climate gradient are often partly genetically determined and may differ in their response to inundation. Changes to inundation patterns across a climate gradient could thus result in site-specific inundation responses. Phenotypic variability is more often studied in riparian trees, yet riparian shrubs are key elements of riparian systems and may differ from trees in phenotypic variability and environmental responses. METHODS: We tested whether individuals of a clonal, riparian shrub, Pluchea sericea, collected from provenances spanning a temperature gradient differed in their phenotypes and responses to inundation and to what degree any differences were related to genotype. Plants were subjected to different inundation depths and a subset genotyped. Variables related to growth and resource acquisition were measured and analyzed using hierarchical, multivariate Bayesian linear regressions. RESULTS: Individuals from different provenances differed in their phenotypes, but not in their response to inundation. Phenotypes were not related to provenance temperature but were partially governed by genotype. Growth was more strongly influenced by inundation, while resource acquisition was more strongly controlled by genotype. CONCLUSIONS: Growth and resource acquisition responses in a clonal, riparian shrub are affected by changes to inundation and plant demographics in unique ways. Shrubs appear to differ from trees in their responses to environmental change. Understanding environmental effects on shrubs separately from those of trees will be a key part of evaluating impacts of environmental change on riparian ecosystems.


Asunto(s)
Ecosistema , Inundaciones , Teorema de Bayes , Clima , Genotipo , Ríos
2.
Ecol Evol ; 7(11): 3732-3744, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28616170

RESUMEN

Wetland indicator status (WIS) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species-level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species-level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA), stem specific gravity (SSG), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species-level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG, seed mass, % leaf carbon and height, and for woody species occurred for height, SSG, and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low-density stem tissue. Adaptations to drier habitats in the riparian zone include short, high-density cavitation-resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA