Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7841): 270-275, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33116299

RESUMEN

There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Colon/citología , Evaluación Preclínica de Medicamentos/métodos , Pulmón/citología , Organoides/efectos de los fármacos , Organoides/virología , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/prevención & control , Colon/efectos de los fármacos , Colon/virología , Aprobación de Drogas , Femenino , Xenoinjertos/efectos de los fármacos , Humanos , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/virología , Masculino , Ratones , Organoides/citología , Organoides/metabolismo , SARS-CoV-2/genética , Estados Unidos , United States Food and Drug Administration , Tropismo Viral , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
3.
Development ; 142(21): 3637-48, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26534984

RESUMEN

Homozygous Mnx1 mutation causes permanent neonatal diabetes in humans, but via unknown mechanisms. Our systematic and longitudinal analysis of Mnx1 function during murine pancreas organogenesis and into the adult uncovered novel stage-specific roles for Mnx1 in endocrine lineage allocation and ß-cell fate maintenance. Inactivation in the endocrine-progenitor stage shows that Mnx1 promotes ß-cell while suppressing δ-cell differentiation programs, and is crucial for postnatal ß-cell fate maintenance. Inactivating Mnx1 in embryonic ß-cells (Mnx1(Δbeta)) caused ß-to-δ-like cell transdifferentiation, which was delayed until postnatal stages. In the latter context, ß-cells escaping Mnx1 inactivation unexpectedly upregulated Mnx1 expression and underwent an age-independent persistent proliferation. Escaper ß-cells restored, but then eventually surpassed, the normal pancreatic ß-cell mass, leading to islet hyperplasia in aged mice. In vitro analysis of islets isolated from Mnx1(Δbeta) mice showed higher insulin secretory activity and greater insulin mRNA content than in wild-type islets. Mnx1(Δbeta) mice also showed a much faster return to euglycemia after ß-cell ablation, suggesting that the new ß-cells derived from the escaper population are functional. Our findings identify Mnx1 as an important factor in ß-cell differentiation and proliferation, with the potential for targeting to increase the number of endogenous ß-cells for diabetes therapy.


Asunto(s)
Diabetes Mellitus/patología , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/metabolismo , Animales , Transdiferenciación Celular , Senescencia Celular , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/genética , Humanos , Hiperplasia/metabolismo , Células Secretoras de Insulina/citología , Ratones , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Células Secretoras de Somatostatina/metabolismo , Factores de Transcripción/genética
4.
Development ; 140(4): 751-64, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23325761

RESUMEN

Pancreatic multipotent progenitor cells (MPCs) produce acinar, endocrine and duct cells during organogenesis, but their existence and location in the mature organ remain contentious. We used inducible lineage-tracing from the MPC-instructive gene Ptf1a to define systematically in mice the switch of Ptf1a(+) MPCs to unipotent proacinar competence during the secondary transition, their rapid decline during organogenesis, and absence from the mature organ. Between E11.5 and E15.5, we describe tip epithelium heterogeneity, suggesting that putative Ptf1a(+)Sox9(+)Hnf1ß(+) MPCs are intermingled with Ptf1a(HI)Sox9(LO) proacinar progenitors. In the adult, pancreatic duct ligation (PDL) caused facultative reactivation of multipotency factors (Sox9 and Hnf1ß) in Ptf1a(+) acini, which undergo rapid reprogramming to duct cells and longer-term reprogramming to endocrine cells, including insulin(+) ß-cells that are mature by the criteria of producing Pdx1(HI), Nkx6.1(+) and MafA(+). These Ptf1a lineage-derived endocrine/ß-cells are likely formed via Ck19(+)/Hnf1ß(+)/Sox9(+) ductal and Ngn3(+) endocrine progenitor intermediates. Acinar to endocrine/ß-cell transdifferentiation was enhanced by combining PDL with pharmacological elimination of pre-existing ß-cells. Thus, we show that acinar cells, without exogenously introduced factors, can regain aspects of embryonic multipotentiality under injury, and convert into mature ß-cells.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Multipotentes/fisiología , Organogénesis/fisiología , Páncreas/embriología , Recuperación de la Función/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Células Acinares/citología , Animales , Pesos y Medidas Corporales , Técnicas de Sustitución del Gen , Ratones , Microscopía Confocal , Células Madre Multipotentes/metabolismo , Páncreas/fisiología , Tamoxifeno , Factores de Tiempo
5.
Gastroenterology ; 146(1): 233-44.e5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23999170

RESUMEN

BACKGROUND & AIMS: Metaplasias often have characteristics of developmentally related tissues. Pancreatic metaplastic ducts are usually associated with pancreatitis and pancreatic ductal adenocarcinoma. The tuft cell is a chemosensory cell that responds to signals in the extracellular environment via effector molecules. Commonly found in the biliary tract, tuft cells are absent from normal murine pancreas. Using the aberrant appearance of tuft cells as an indicator, we tested if pancreatic metaplasia represents transdifferentiation to a biliary phenotype and what effect this has on pancreatic tumorigenesis. METHODS: We analyzed pancreatic tissue and tumors that developed in mice that express an activated form of Kras (Kras(LSL-G12D/+);Ptf1a(Cre/+) mice). Normal bile duct, pancreatic duct, and tumor-associated metaplasias from the mice were analyzed for tuft cell and biliary progenitor markers, including SOX17, a transcription factor that regulates biliary development. We also analyzed pancreatic tissues from mice expressing transgenic SOX17 alone (ROSA(tTa/+);Ptf1(CreERTM/+);tetO-SOX17) or along with activated Kras (ROSAtT(a/+);Ptf1a(CreERTM/+);tetO-SOX17;Kras(LSL-G12D;+)). RESULTS: Tuft cells were frequently found in areas of pancreatic metaplasia, decreased throughout tumor progression, and absent from invasive tumors. Analysis of the pancreatobiliary ductal systems of mice revealed tuft cells in the biliary tract but not the normal pancreatic duct. Analysis for biliary markers revealed expression of SOX17 in pancreatic metaplasia and tumors. Pancreas-specific overexpression of SOX17 led to ductal metaplasia along with inflammation and collagen deposition. Mice that overexpressed SOX17 along with Kras(G12D) had a greater degree of transformed tissue compared with mice expressing only Kras(G12D). Immunofluorescence analysis of human pancreatic tissue arrays revealed the presence of tuft cells in metaplasia and early-stage tumors, along with SOX17 expression, consistent with a biliary phenotype. CONCLUSIONS: Expression of Kras(G12D) and SOX17 in mice induces development of metaplasias with a biliary phenotype containing tuft cells. Tuft cells express a number of tumorigenic factors that can alter the microenvironment. Expression of SOX17 induces pancreatitis and promotes Kras(G12D)-induced tumorigenesis in mice.


Asunto(s)
Conductos Biliares/citología , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/patología , Proteínas HMGB/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/patología , Factores de Transcripción SOXF/metabolismo , Animales , Conductos Biliares/metabolismo , Carcinoma Ductal Pancreático/complicaciones , Carcinoma Ductal Pancreático/metabolismo , Transformación Celular Neoplásica/metabolismo , Humanos , Metaplasia/complicaciones , Metaplasia/metabolismo , Metaplasia/patología , Ratones , Ratones Transgénicos , Conductos Pancreáticos/citología , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/metabolismo , Pancreatitis/metabolismo , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
6.
Cell Stem Cell ; 31(1): 71-88.e8, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38151022

RESUMEN

KRAS mutations, mainly G12D and G12V, are found in more than 90% of pancreatic ductal adenocarcinoma (PDAC) cases. The success of drugs targeting KRASG12C suggests the potential for drugs specifically targeting these alternative PDAC-associated KRAS mutations. Here, we report a high-throughput drug-screening platform using a series of isogenic murine pancreatic organoids that are wild type (WT) or contain common PDAC driver mutations, representing both classical and basal PDAC phenotypes. We screened over 6,000 compounds and identified perhexiline maleate, which can inhibit the growth and induce cell death of pancreatic organoids carrying the KrasG12D mutation both in vitro and in vivo and primary human PDAC organoids. scRNA-seq analysis suggests that the cholesterol synthesis pathway is upregulated specifically in the KRAS mutant organoids, including the key cholesterol synthesis regulator SREBP2. Perhexiline maleate decreases SREBP2 expression levels and reverses the KRAS mutant-induced upregulation of the cholesterol synthesis pathway.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Mutación/genética , Organoides/metabolismo , Colesterol
7.
Dev Biol ; 362(1): 57-64, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22146645

RESUMEN

The Notch signaling pathway regulates embryonic development of the pancreas, inhibiting progenitor differentiation into exocrine acinar and endocrine islet cells. The adult pancreas appears to lack progenitor cells, and its mature cell types are maintained by the proliferation of pre-existing differentiated cells. Nonetheless, Notch remains active in adult duct and terminal duct/centroacinar cells (CACs), in which its function is unknown. We previously developed mice in which cells expressing the Notch target gene Hes1 can be labeled and manipulated, by expression of Cre recombinase, and demonstrated that Hes1(+) CACs do not behave as acinar or islet progenitors in the uninjured pancreas, or as islet progenitors after pancreatic duct ligation. In the current study, we assessed the function of Notch signaling in the adult pancreas by deleting the transcription factor partner of Notch, Rbpj, specifically in Hes1(+) cells. We find that loss of Rbpj depletes the pancreas of Hes1-expressing CACs, abrogating their ongoing contribution to growth and homeostasis of more proximal duct structures. Upon Rbpj deletion, CACs undergo a rapid transformation into acinar cells, suggesting that constitutive Notch activity suppresses the acinar differentiation potential of CACs. Together, our data provide direct evidence of an endogenous genetic program to control interconversion of cell fates in the adult pancreas.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Homeodominio/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Páncreas Exocrino/fisiología , Fenotipo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Células Acinares/metabolismo , Animales , Diferenciación Celular/fisiología , Técnicas Histológicas , Ratones , Oligonucleótidos/genética , Factor de Transcripción HES-1
8.
Dev Biol ; 367(1): 40-54, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22546694

RESUMEN

There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a "tet-on" inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the ß cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and ß cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and ß cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in ß cell proliferation and ß cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in ß cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in ß cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that (1) increased EC number does not promote, but actually impairs ß cell proliferation and islet formation; (2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; (3) angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Angiopoyetina 1/metabolismo , Angiopoyetina 2/metabolismo , Animales , Recuento de Células , Células Endoteliales/metabolismo , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/metabolismo , Ratones
9.
Dev Dyn ; 240(3): 530-65, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21337462

RESUMEN

Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature ß-cells.


Asunto(s)
Organogénesis/fisiología , Páncreas/citología , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Humanos , Organogénesis/genética
10.
J Mol Cell Biol ; 12(8): 580-592, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32652003

RESUMEN

Recent advances in development of protocols for directed differentiation from human pluripotent stem cells (hPSCs) to defined lineages, in combination with 3D organoid technology, have facilitated the generation of various endoderm-derived organoids for in vitro modeling of human gastrointestinal development and associated diseases. In this review, we discuss current state-of-the-art strategies for generating hPSC-derived endodermal organoids including stomach, liver, pancreatic, small intestine, and colonic organoids. We also review the advantages of using this system to model various human diseases and evaluate the shortcomings of this technology. Finally, we emphasize how other technologies, such as genome editing and bioengineering, can be incorporated into the 3D hPSC-organoid models to generate even more robust and powerful platforms for understanding human organ development and disease modeling.


Asunto(s)
Enfermedad , Endodermo/embriología , Modelos Biológicos , Organogénesis , Organoides/citología , Células Madre Pluripotentes/citología , Endodermo/citología , Humanos
11.
bioRxiv ; 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32511403

RESUMEN

The SARS-CoV-2 virus has caused already over 3.5 million COVID-19 cases and 250,000 deaths globally. There is an urgent need to create novel models to study SARS-CoV-2 using human disease-relevant cells to understand key features of virus biology and facilitate drug screening. As primary SARS-CoV-2 infection is respiratory-based, we developed a lung organoid model using human pluripotent stem cells (hPSCs) that could be adapted for drug screens. The lung organoids, particularly aveolar type II cells, express ACE2 and are permissive to SARS-CoV-2 infection. Transcriptomic analysis following SARS-CoV-2 infection revealed a robust induction of chemokines and cytokines with little type I/III interferon signaling, similar to that observed amongst human COVID-19 pulmonary infections. We performed a high throughput screen using hPSC-derived lung organoids and identified FDA-approved drug candidates, including imatinib and mycophenolic acid, as inhibitors of SARS-CoV-2 entry. Pre- or post-treatment with these drugs at physiologically relevant levels decreased SARS-CoV-2 infection of hPSC-derived lung organoids. Together, these data demonstrate that hPSC-derived lung cells infected by SARS-CoV-2 can model human COVID-19 disease and provide a valuable resource to screen for FDA-approved drugs that might be repurposed and should be considered for COVID-19 clinical trials.

12.
Cancer Cell ; 38(2): 198-211.e8, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32559497

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is driven by co-existing mutations in KRAS and TP53. However, how these mutations collaborate to promote this cancer is unknown. Here, we uncover sequence-specific changes in RNA splicing enforced by mutant p53 which enhance KRAS activity. Mutant p53 increases expression of splicing regulator hnRNPK to promote inclusion of cytosine-rich exons within GTPase-activating proteins (GAPs), negative regulators of RAS family members. Mutant p53-enforced GAP isoforms lose cell membrane association, leading to heightened KRAS activity. Preventing cytosine-rich exon inclusion in mutant KRAS/p53 PDACs decreases tumor growth. Moreover, mutant p53 PDACs are sensitized to inhibition of splicing via spliceosome inhibitors. These data provide insight into co-enrichment of KRAS and p53 mutations and therapeutics targeting this mechanism in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Mutación , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Empalme del ARN , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tratamiento con ARN de Interferencia/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
Cell Stem Cell ; 27(1): 125-136.e7, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32579880

RESUMEN

SARS-CoV-2 has caused the COVID-19 pandemic. There is an urgent need for physiological models to study SARS-CoV-2 infection using human disease-relevant cells. COVID-19 pathophysiology includes respiratory failure but involves other organ systems including gut, liver, heart, and pancreas. We present an experimental platform comprised of cell and organoid derivatives from human pluripotent stem cells (hPSCs). A Spike-enabled pseudo-entry virus infects pancreatic endocrine cells, liver organoids, cardiomyocytes, and dopaminergic neurons. Recent clinical studies show a strong association with COVID-19 and diabetes. We find that human pancreatic beta cells and liver organoids are highly permissive to SARS-CoV-2 infection, further validated using adult primary human islets and adult hepatocyte and cholangiocyte organoids. SARS-CoV-2 infection caused striking expression of chemokines, as also seen in primary human COVID-19 pulmonary autopsy samples. hPSC-derived cells/organoids provide valuable models for understanding the cellular responses of human tissues to SARS-CoV-2 infection and for disease modeling of COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Organoides/virología , Neumonía Viral/virología , Tropismo , Enzima Convertidora de Angiotensina 2 , Animales , Autopsia , COVID-19 , Línea Celular , Infecciones por Coronavirus/patología , Hepatocitos/patología , Hepatocitos/virología , Humanos , Células Madre Pluripotentes Inducidas/virología , Hígado/patología , Ratones , Páncreas/patología , Páncreas/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/patología , SARS-CoV-2 , Internalización del Virus
14.
Methods Mol Biol ; 561: 65-72, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19504064

RESUMEN

The possibility of generating transgenic animals is of obvious advantage for the analysis of gene function in development and disease. One of the established vertebrate model systems in developmental biology is the amphibian Xenopus laevis. Different techniques have been successfully applied to create Xenopus transgenics; in this chapter, the so-called meganuclease method is described. This technique is not only technically simple, but also comparably efficient and applicable to both Xenopus laevis and Xenopus tropicalis. The commercially available endonuclease I-SceI (meganuclease) mediates the integration of foreign DNA into the frog genome after coinjection into fertilized eggs. Tissue-specific gene expression, as well as germline transmission, has been observed.


Asunto(s)
Animales Modificados Genéticamente , Desoxirribonucleasas de Localización Especificada Tipo II/administración & dosificación , Fertilización In Vitro/métodos , Técnicas de Transferencia de Gen , Proteínas de Saccharomyces cerevisiae/administración & dosificación , Transgenes/fisiología , Xenopus laevis/genética , Animales , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Embrión no Mamífero/metabolismo , Femenino , Mutación de Línea Germinal , Microinyecciones/métodos , Oocitos/citología , Oocitos/fisiología , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Distribución Tisular , Xenopus laevis/embriología
15.
Cell Mol Gastroenterol Hepatol ; 8(4): 579-594, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31310834

RESUMEN

BACKGROUND & AIMS: Activating mutation of the KRAS gene is common in some cancers, such as pancreatic cancer, but rare in other cancers. Chronic pancreatitis is a predisposing condition for pancreatic ductal adenocarcinoma (PDAC), but how it synergizes with KRAS mutation is not known. METHODS: We used a mouse model to express an activating mutation of Kras in conjunction with obstruction of the main pancreatic duct to recapitulate a common etiology of human chronic pancreatitis. Because the cell of origin of PDAC is not clear, Kras mutation was introduced into either duct cells or acinar cells. RESULTS: Although KrasG12D expression in both cell types was protective against damage-associated cell death, chronic pancreatitis induced p53, p21, and growth arrest only in acinar-derived cells. Mutant duct cells did not elevate p53 or p21 expression and exhibited increased proliferation driving the appearance of PDAC over time. CONCLUSIONS: One mechanism by which tissues may be susceptible or resistant to KRASG12D-initiated tumorigenesis is whether they undergo a p53-mediated damage response. In summary, we have uncovered a mechanism by which inflammation and intrinsic cellular programming synergize for the development of PDAC.


Asunto(s)
Pancreatitis Crónica/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animales , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Genes ras , Metaplasia , Ratones , Mutación , Neoplasias Pancreáticas/patología , Pancreatitis Crónica/genética , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Neoplasias Pancreáticas
16.
Mech Dev ; 124(7-8): 518-31, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643968

RESUMEN

Early patterning of the endoderm as a prerequisite for pancreas specification involves retinoic acid (RA) as a critical signalling molecule in gastrula stage Xenopus embryos. In extension of our previous studies, we made systematic use of early embryonic endodermal and mesodermal explants. We find RA to be sufficient to induce pancreas-specific gene expression in dorsal but not ventral endoderm. The differential expression of retinoic acid receptors (RARs) in gastrula stage endoderm is important for the distinct responsiveness of dorsal versus ventral explants. Furthermore, BMP signalling, that is repressed dorsally, prevents the formation of pancreatic precursor cells in the ventral endoderm of gastrula stage Xenopus embryos. An additional requirement for mesoderm suggests the production of one or more further pancreas inducing signals by this tissue. Finally, recombination of manipulated early embryonic explants, and also inhibition of RA activity in whole embryos, reveal that RA signalling, as it is relevant for pancreas development, operates simultaneously on both mesodermal and endodermal germ layers.


Asunto(s)
Endodermo/fisiología , Páncreas/embriología , Tretinoina/farmacología , Xenopus laevis/embriología , Animales , Tipificación del Cuerpo/fisiología , Páncreas/fisiología , Transducción de Señal , Xenopus laevis/fisiología
17.
Cell Rep ; 22(10): 2667-2676, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514095

RESUMEN

Many patients with type 1 diabetes (T1D) have residual ß cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual ß cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant ß cells appeared to maintain several aspects of regulated insulin secretion. However, the function of T1D α cells was markedly reduced, and these cells had alterations in transcription factors constituting α and ß cell identity. In the native pancreas and after placing the T1D islets into a non-autoimmune, normoglycemic in vivo environment, there was no evidence of α-to-ß cell conversion. These results suggest an explanation for the disordered T1D counterregulatory glucagon response to hypoglycemia.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Regulación de la Expresión Génica , Células Secretoras de Glucagón/metabolismo , Adolescente , Adulto , Animales , Estudios de Casos y Controles , Reprogramación Celular , Niño , Femenino , Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Humanos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Donantes de Tejidos , Factores de Transcripción/metabolismo , Adulto Joven
18.
Artículo en Inglés | MEDLINE | ID: mdl-26257608

RESUMEN

Commissural neurons project across the midline at all levels of the central nervous system (CNS), providing bilateral communication critical for the coordination of motor activity and sensory perception. Midline crossing at the spinal ventral midline has been extensively studied and has revealed that multiple developmental lineages contribute to this commissural neuron population. Ventral midline crossing occurs in a manner dependent on Robo3 regulation of Robo/Slit signaling and the ventral commissure is absent in the spinal cord and hindbrain of Robo3 mutants. Midline crossing in the spinal cord is not limited to the ventral midline, however. While prior anatomical studies provide evidence that commissural axons also cross the midline dorsally, little is known of the genetic and molecular properties of dorsally-crossing neurons or of the mechanisms that regulate dorsal midline crossing. In this study, we describe a commissural neuron population that crosses the spinal dorsal midline during the last quarter of embryogenesis in discrete fiber bundles present throughout the rostrocaudal extent of the spinal cord. Using immunohistochemistry, neurotracing, and mouse genetics, we show that this commissural neuron population includes spinal inhibitory neurons and sensory nociceptors. While the floor plate and roof plate are dispensable for dorsal midline crossing, we show that this population depends on Robo/Slit signaling yet crosses the dorsal midline in a Robo3-independent manner. The dorsally-crossing commissural neuron population we describe suggests a substrate circuitry for pain processing in the dorsal spinal cord.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de la Membrana/metabolismo , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/fisiología , Nociceptores/fisiología , Médula Espinal , Factores de Edad , Aminoácidos/metabolismo , Animales , Axones/fisiología , Tipificación del Cuerpo/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Actividad Motora/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Inhibición Neural/genética , Receptores de Superficie Celular , Transducción de Señal/fisiología , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Curr Opin Endocrinol Diabetes Obes ; 21(2): 77-82, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24569548

RESUMEN

PURPOSE OF REVIEW: We highlight some of the major recent advances in characterizing human pancreas development and endocrine cell differentiation. RECENT FINDINGS: Extensive research efforts have helped to define crucial events in the mouse pancreas organogenesis. Information gained from these studies was used to develop human embryonic stem cell (hESC) differentiation protocols with the goal of generating functional glucose-responsive, insulin-producing human ß-cells. In spite of remarkable progress in hESC differentiation, current protocols based on mouse developmental biology can produce human ß-cells only in vivo. New differentiation markers and recently generated reagents may provide an unprecedented opportunity to develop a high-density expression map of human fetal pancreas and pancreatic islets that could serve as a reference point for in vitro hESC differentiation. SUMMARY: Integrating an increased knowledge of human pancreas development into hESC differentiation protocols has the potential to greatly advance our ability to generate functional insulin-producing cells for ß-cell replacement therapy.


Asunto(s)
Células Madre Embrionarias/citología , Sistema Endocrino/citología , Células Secretoras de Insulina/citología , Páncreas/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Sistema Endocrino/embriología , Glucosa/metabolismo , Humanos , Ratones , Organogénesis , Páncreas/embriología , Páncreas/crecimiento & desarrollo , Transducción de Señal
20.
Diabetes ; 62(12): 4154-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23884891

RESUMEN

Pancreatic islets are highly vascularized mini-organs, and vascular endothelial growth factor (VEGF)-A is a critical factor in the development of islet vascularization. To investigate the role of VEGF-A and endothelial cells (ECs) in adult islets, we used complementary genetic approaches to temporally inactivate VEGF-A in developing mouse pancreatic and islet progenitor cells or in adult ß-cells. Inactivation of VEGF-A early in development dramatically reduced pancreatic and islet vascularization, leading to reduced ß-cell proliferation in both developing and adult islets and, ultimately, reduced ß-cell mass and impaired glucose clearance. When VEGF-A was inactivated in adult ß-cells, islet vascularization was reduced twofold. Surprisingly, even after 3 months of reduced islet vascularization, islet architecture and ß-cell gene expression, mass, and function were preserved with only a minimal abnormality in glucose clearance. These data show that normal pancreatic VEGF-A expression is critical for the recruitment of ECs and the subsequent stimulation of endocrine cell proliferation during islet development. In contrast, although VEGF-A is required for maintaining the specialized vasculature observed in normal adult islets, adult ß-cells can adapt and survive long-term reductions in islet vascularity. These results indicate that VEGF-A and islet vascularization have a lesser role in adult islet function and ß-cell mass.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/irrigación sanguínea , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/citología , Islotes Pancreáticos/crecimiento & desarrollo , Islotes Pancreáticos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA