Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 11: 1229, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903403

RESUMEN

Mineral elements play an extremely important role in human health, and are worthy of study in rice grain. Wild rice is an important gene pool for rice improvement including grain yield, disease, and pest resistance as well as mineral elements. In this study, we identified 33 quantitative trait loci (QTL) for Fe, Zn, Se, Cd, Hg, and As contents in wild rice Oryza longistaminata. Of which, 29 QTLs were the first report, and 12 QTLs were overlapped to form five clusters as qSe1/qCd1 on chromosome 1, qCd4.2/qHg4 on chromosome 4, qFe5.2/qZn5.2 on chromosome 5, qFe9/qHg9.2/qAs9.2 on chromosome 9, and qCd10/qHg10 on chromosome 10. Importantly, qSe1/qCd1, can significantly improve the Se content while reduce the Cd content, and qFe5.2/qZn5.2 can significantly improve both the Fe and Zn contents, they were delimited to an interval about 53.8 Kb and 26.2 Kb, respectively. These QTLs detected from Oryza longistaminata not only establish the basis for subsequent gene cloning to decipher the genetic mechanism of mineral element accumulation, but also provide new genetic resource for rice quality improvement.

2.
J Agric Food Chem ; 67(32): 8766-8772, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31313921

RESUMEN

In decades of hybrid rice breeding, the combining ability has been successfully used to evaluate excellent parental lines and predict heterosis. However, previous studies for the combining ability mainly focused on cultivated rice and rarely involved wild rice. In this study, for the first time, we identified 20 new quantitative trait loci (QTLs) for the combining ability in wild rice using a North Carolina II mating design. Among them, qGCA1, one of the major QTLs that can significantly improve the general combining ability of the plant height, spikelet number, and yield per plant, was delimited to an interval of about 72 kb on chromosome 1. qSCA8, another major QTL, which can significantly improve the specific combining ability of the seed-setting rate and yield per plant, was located in an interval of about 90 kb on chromosome 8. These QTLs discovered from wild rice will provide new ideas to explain the genetic mechanism of the combining ability and establish the basis for breeding of high-combining-ability rice.


Asunto(s)
Cromosomas de las Plantas/genética , Oryza/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 9: 1909, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622552

RESUMEN

Seed vigor is an important character of seed quality that promotes rice to germinate rapidly from soil and developing to a strong seedling, especially in the current rice direct-sowing production system. However, previous studies for seed vigor mainly concentrate in cultivars, and less reports involving in wild rice. In this study, 152 backcross inbred lines (BILs) derived from wild rice Oryza longistaminata were genotyped with re-sequencing technology, and QTLs for seed vigor related traits under normal and artificial aging treatment were analyzed. Totally, 36 QTLs were detected, of which, eight for germination potential (GP), 10 for germination rate (GR), 9 for seedling length (SL), and 9 for root length (RL). Among these, 14 novel QTLs were identified from O. longistaminata. Of which, six QTLs were related to germination, and eight related to seedling growth under aging stress. What's more, the major QTLs q9SL1.1, q6SL1.1, and q3SL1.1 for seedling length were fallen in the same locus and fine-mapped an interval about 90 Kb. The major QTLs q9GR8.1 and q9GP8.1 related with germination were fine-mapped to an interval about 90 Kb. This work will provide us basis for breeding of high seed vigor rice in rice breeding programs and further cloning of these genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA