Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(16): 6387-6393, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35414169

RESUMEN

Sensitive and accurate determination of aflatoxin B1 (AFB1) is of great significance to food safety and human health as it is recognized as the most toxic mycotoxin and carcinogenic. Herein, we report a ratiometric luminescence aptasensor based on dual-emissive persistent luminescent nanoparticles (PLNP) for the accurate determination of trace AFB1 in complex food samples without autofluorescence and exogenous interference. Dual-emissive PLNP ZnGa2O4:Cr0.0001 was prepared first and acted as the donor for energy transfer as well as the signal unit with phosphorescence at 714 and 508 nm (the detection and the reference signal, respectively). AFB1 aptamer was then bonded on the surface of PLNP to offer specific recognition ability. Aptamer complementary DNA modified with Cy5.5 was employed as the acceptor for energy transfer and the quenching group to eventually develop a turn-on ratiometric luminescence aptasensor. The developed ratiometric luminescence aptasensor combined the merits of long-lasting luminescence, in situ excitation and autofluorescence-free of PLNP, exogenous interference-free and self-calibration reading of ratiometric sensor, as well as the high selectivity of aptamer, holding great promise for accurate determination of trace AFB1 in complex matrix. The developed ratiometric aptasensor exhibited excellent linearity (0.05-70 ng mL-1), low limit of detection (0.016 ng mL-1), and good precision (2.3% relative standard deviation for 11 replicate determination of 1 ng mL-1 AFB1). The proposed ratiometric aptasensor was successfully applied for the determination of AFB1 in corn, wheat, peanut, millet, oats, and wheat kernels with recoveries of 95.1-106.5%.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Aflatoxina B1/análisis , Humanos , Límite de Detección , Luminiscencia
2.
Anal Chem ; 93(19): 7348-7354, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33966391

RESUMEN

Persistent luminescence nanoparticles (PLNPs) hold great promise for bioimaging owing to no demand for in situ excitation and negligible tissue autofluorescence interference. Nevertheless, huge challenges remain in the further development of single-emissive PLNPs due to the great variation of luminescence with time after excitation ceases. Herein, we report the controllable fabrication of dual-emissive monodispersed PLNPs (ZnGa2O4:Cr) by a surfactant-assisted hydrothermal method in combination with postcalcination for bioimaging. The prepared PLNPs emit luminescence at 508 and 714 nm with a constant luminescence ratio (I508/I714) for more than 1 h after UV excitation stops. Moreover, the prepared PLNPs give a constant I508/I714 ratio signal after repeated excitation by a LED lamp, allowing luminescence ratio imaging to ensure the long-term accuracy for in vivo imaging. In vivo ratio imaging demonstrates the potential of the prepared PLNPs for precision bioimaging. In addition, the prepared PLNPs have been applied to fabricate a theranostic nanoprobe with intelligent tumor-targeted imaging and chemo-photothermal synergistic therapy to further reveal their unique advantage for imaging guided therapy. We believe that the dual-emissive PLNPs will provide a promising nanoplatform for bioimaging and biomedical applications.


Asunto(s)
Nanopartículas , Neoplasias , Diagnóstico por Imagen , Humanos , Luminiscencia
3.
Food Chem ; 413: 135611, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787665

RESUMEN

Accurate and sensitive detection of ochratoxin A (OTA) is highly necessary due to its high carcinogenicity, teratogenicity and mutagenicity. Herein, we reported an exogenous interference and autofluorescence-free ratiometric aptasensor based on dual-colored persistent luminescent nanoparticles for precise detection of OTA. Green-emitting ZnGeO:Mn bonded with OTA aptamer and BHQ1-modified complementary base was acted as detection and specific recognition probe (ZGM@BHQ1). Quaternary ammonium modified ZnGaGeO:Cr with red emission was employed as reference probe and further bonded to ZGM@BHQ1 through electrostatic interaction to construct the ratiometric aptasensor. The developed ratiometric aptasensor was free from real-time excitation, external interference and autofluorescence and gave low detection limit of 3.4 pg mL-1, wide linearity in the range of 0.01-50 ng mL-1 and high precision of 3.1 % (11 replicate determinations, at 1 ng mL-1 level). The applicability of the aptasensor was successfully demonstrated by analyzing OTA in in grain samples with recoveries of 97.6 %-105.2 %.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas , Ocratoxinas , Luminiscencia , Ocratoxinas/análisis , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA