Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 17(5): e1009604, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34048488

RESUMEN

Burkholderia pseudomallei, the etiological agent of melioidosis in humans and animals, often occupies environmental niches and infection sites characterized by limited concentrations of oxygen. Versatile genomic features enable this pathogen to maintain its physiology and virulence under hypoxia, but the crucial regulatory networks employed to switch from oxygen dependent respiration to alternative terminal electron acceptors (TEA) like nitrate, remains poorly understood. Here, we combined a Tn5 transposon mutagenesis screen and an anaerobic growth screen to identify a two-component signal transduction system with homology to RegAB. We show that RegAB is not only essential for anaerobic growth, but also for full virulence in cell lines and a mouse infection model. Further investigations of the RegAB regulon, using a global transcriptomic approach, identified 20 additional regulators under transcriptional control of RegAB, indicating a superordinate role of RegAB in the B. pseudomallei anaerobiosis regulatory network. Of the 20 identified regulators, NarX/L and a FNR homolog were selected for further analyses and a role in adaptation to anaerobic conditions was demonstrated. Growth experiments identified nitrate and intermediates of the denitrification process as the likely signal activateing RegAB, NarX/L, and probably of the downstream regulators Dnr or NsrR homologs. While deletions of individual genes involved in the denitrification process demonstrated their important role in anaerobic fitness, they showed no effect on virulence. This further highlights the central role of RegAB as the master regulator of anaerobic metabolism in B. pseudomallei and that the complete RegAB-mediated response is required to achieve full virulence. In summary, our analysis of the RegAB-dependent modulon and its interconnected regulons revealed a key role for RegAB of B. pseudomallei in the coordination of the response to hypoxic conditions and virulence, in the environment and the host.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/genética , Melioidosis/microbiología , Adaptación Fisiológica , Anaerobiosis , Animales , Proteínas Bacterianas/genética , Burkholderia pseudomallei/patogenicidad , Burkholderia pseudomallei/fisiología , Femenino , Regulación Bacteriana de la Expresión Génica , Hipoxia , Ratones , Ratones Endogámicos BALB C , Mutación , Nitratos/metabolismo , Oxidación-Reducción , Transcriptoma , Virulencia
2.
BMC Microbiol ; 23(1): 37, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36759782

RESUMEN

BACKGROUND: The Bacillus cereus Sigma B (SigB) dependent general stress response is activated via the two-component RsbKY system, which involves a phosphate transfer from RsbK to RsbY. It has been hypothesized that the Hpr-like phosphocarrier protein (Bc1009) encoded by bc1009 in the SigB gene cluster may play a role in this transfer, thereby acting as a regulator of SigB activation. Alternatively, Bc1009 may be involved in the activation of a subset of SigB regulon members. RESULTS: We first investigated the potential role of bc1009 to act as a SigB regulator but ruled out this possibility as the deletion of bc1009 did not affect the expression of sigB and other SigB gene cluster members. The SigB-dependent functions of Bc1009 were further examined in B. cereus ATCC14579 via comparative proteome profiling (backed up by transcriptomics) of wt, Δbc1009 and ΔsigB deletion mutants under heat stress at 42 °C. This revealed 284 proteins displaying SigB-dependent alterations in protein expression levels in heat-stressed cells, including a subgroup of 138 proteins for which alterations were also Bc1009-dependent. Next to proteins with roles in stress defense, newly identified SigB and Bc1009-dependent proteins have roles in cell motility, signal transduction, transcription, cell wall biogenesis, and amino acid transport and metabolism. Analysis of lethal stress survival at 50 °C after pre-adaptation at 42 °C showed intermediate survival efficacy of Δbc1009 cells, highest survival of wt, and lowest survival of ΔsigB cells, respectively. Additional comparative proteome analysis of non-stressed wt and mutant cells at 30 °C revealed 96 proteins with SigB and Bc1009-dependent differences in levels: 51 were also identified under heat stress, and 45 showed significant differential expression at 30 °C. This includes proteins with roles in carbohydrate/ion transport and metabolism. Overlapping functions at 30 °C and 42 °C included proteins involved in motility, and ΔsigB and Δbc1009 cells showed reduced motility compared to wt cells in swimming assays at both temperatures. CONCLUSION: Our results extend the B. cereus SigB regulon to > 300 members, with a novel role of SigB-dependent Bc1009 in the activation of a subregulon of  > 180 members, conceivably via interactions with other transcriptional regulatory networks.


Asunto(s)
Bacillus cereus , Proteoma , Bacillus cereus/metabolismo , Proteoma/análisis , Regulón , Proteínas Bacterianas/metabolismo , Respuesta al Choque Térmico , Factor sigma/genética , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
J Bacteriol ; 203(8)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33526614

RESUMEN

To be a successful pathogen, Staphylococcus aureus has to adapt its metabolism to the typically oxygen- and glucose-limited environment of the host. Under fermenting conditions and in the presence of glucose, S. aureus uses glycolysis to generate ATP via substrate-level phosphorylation and mainly lactic acid fermentation to maintain the redox balance by reoxidation of NADH equivalents. However, it is less clear how S. aureus proceeds under anoxic conditions and glucose limitation, likely representing the bona fide situation in the host. Using a combination of proteomic, transcriptional, and metabolomic analyses, we show that in the absence of an abundant glycolysis substrate, the available carbon source pyruvate is converted to acetyl coenzyme A (AcCoA) in a pyruvate formate-lyase (PflB)-dependent reaction to produce ATP and acetate. This process critically depends on derepression of the catabolite control protein A (CcpA), leading to upregulation of pflB transcription. Under these conditions, ethanol production is repressed to prevent wasteful consumption of AcCoA. In addition, our global and quantitative characterization of the metabolic switch prioritizing acetate over lactate fermentation when glucose is absent illustrates examples of carbon source-dependent control of colonization and pathogenicity factors.IMPORTANCE Under infection conditions, S. aureus needs to ensure survival when energy production via oxidative phosphorylation is not possible, e.g., either due to the lack of terminal electron acceptors or by the inactivation of components of the respiratory chain. Under these conditions, S. aureus can switch to mixed-acid fermentation to sustain ATP production by substrate level phosphorylation. The drop in the cellular NAD+/NADH ratio is sensed by the repressor Rex, resulting in derepression of fermentation genes. Here, we show that expression of fermentation pathways is further controlled by CcpA in response to the availability of glucose to ensure optimal resource utilization under growth-limiting conditions. We provide evidence for carbon source-dependent control of colonization and virulence factors. These findings add another level to the regulatory network controlling mixed-acid fermentation in S. aureus and provide additional evidence for the lifestyle-modulating effect of carbon sources available to S. aureus.


Asunto(s)
Carbono/metabolismo , Staphylococcus aureus/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte de Electrón , Fermentación , Regulación Bacteriana de la Expresión Génica , Ácido Láctico/metabolismo , Oxígeno/metabolismo , Ácido Pirúvico/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
4.
FASEB J ; 34(7): 9018-9033, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32515053

RESUMEN

Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Portadoras/antagonistas & inhibidores , Endotelio Vascular/citología , Fibronectinas/metabolismo , Proteína KRIT1/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Fibronectinas/genética , Humanos , Proteína KRIT1/genética , Proteínas de la Membrana/genética , Fenotipo , Proteínas Proto-Oncogénicas/genética
5.
Mol Cell Proteomics ; 18(6): 1036-1053, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30850421

RESUMEN

Staphylococcus aureus is the causative agent of various biofilm-associated infections in humans causing major healthcare problems worldwide. This type of infection is inherently difficult to treat because of a reduced metabolic activity of biofilm-embedded cells and the protective nature of a surrounding extracellular matrix (ECM). However, little is known about S. aureus biofilm physiology and the proteinaceous composition of the ECM. Thus, we cultivated S. aureus biofilms in a flow system and comprehensively profiled intracellular and extracellular (ECM and flow-through (FT)) biofilm proteomes, as well as the extracellular metabolome compared with planktonic cultures. Our analyses revealed the expression of many pathogenicity factors within S. aureus biofilms as indicated by a high abundance of capsule biosynthesis proteins along with various secreted virulence factors, including hemolysins, leukotoxins, and lipases as a part of the ECM. The activity of ECM virulence factors was confirmed in a hemolysis assay and a Galleria mellonella pathogenicity model. In addition, we uncovered a so far unacknowledged moonlighting function of secreted virulence factors and ribosomal proteins trapped in the ECM: namely their contribution to biofilm integrity. Mechanistically, it was revealed that this stabilizing effect is mediated by the strong positive charge of alkaline virulence factors and ribosomal proteins in an acidic ECM environment, which is caused by the release of fermentation products like formate, lactate, and acetate because of oxygen limitation in biofilms. The strong positive charge of these proteins most likely mediates electrostatic interactions with anionic cell surface components, eDNA, and anionic metabolites. In consequence, this leads to strong cell aggregation and biofilm stabilization. Collectively, our study identified a new molecular mechanism during S. aureus biofilm formation and thus significantly widens the understanding of biofilm-associated S. aureus infections - an essential prerequisite for the development of novel antimicrobial therapies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología , Factores de Virulencia/metabolismo , Ácidos/metabolismo , Animales , ADN Bacteriano/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Metaboloma , Modelos Biológicos , Mariposas Nocturnas/microbiología , Presión Osmótica , Oxígeno/farmacología , Fenotipo , Plancton/citología , Conejos , Proteínas Ribosómicas/metabolismo , Staphylococcus aureus/citología
6.
Microbiology (Reading) ; 166(12): 1160-1170, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186092

RESUMEN

Rifampicin is a broad-spectrum antibiotic that binds to the bacterial RNA polymerase (RNAP), compromising DNA transcription. Rifampicin resistance is common in several microorganisms and it is typically caused by point mutations in the gene encoding the ß subunit of RNA polymerase, rpoB. Different rpoB mutations are responsible for various levels of rifampicin resistance and for a range of secondary effects. rpoB mutations conferring rifampicin resistance have been shown to be responsible for severe effects on transcription, cell fitness, bacterial stress response and virulence. Such effects have never been investigated in the marine pathogen Vibrio vulnificus, even though rifampicin-resistant strains of V. vulnificus have been isolated previously. Moreover, spontaneous rifampicin-resistant strains of V. vulnificus have an important role in conjugation and mutagenesis protocols, with poor consideration of the effects of rpoB mutations. In this work, effects on growth, stress response and virulence of V. vulnificus were investigated using a set of nine spontaneous rifampicin-resistant derivatives of V. vulnificus CMCP6. Three different mutations (Q513K, S522L and H526Y) were identified with varying incidence rates. These three mutant types each showed high resistance to rifampicin [minimal inhibitory concentration (MIC) >800 µg ml-1], but different secondary effects. The strains carrying the mutation H526Y had a growth advantage in rich medium but had severely reduced salt stress tolerance in the presence of high NaCl concentrations as well as a significant reduction in ethanol stress resistance. Strains possessing the S522L mutation had reduced growth rate and overall biomass accumulation in rich medium. Furthermore, investigation of virulence characteristics demonstrated that all the rifampicin-resistant strains showed compromised motility when compared with the wild-type, but no major effects on exoenzyme production were observed. These findings reveal a wide range of secondary effects of rpoB mutations and indicate that rifampicin resistance is not an appropriate selectable marker for studies that aim to investigate phenotypic behaviour in this organism.


Asunto(s)
Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana/fisiología , Locomoción/fisiología , Rifampin/farmacología , Estrés Fisiológico/fisiología , Vibrio vulnificus/fisiología , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Aptitud Genética , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Mutación , Vibrio vulnificus/efectos de los fármacos , Vibrio vulnificus/genética , Vibrio vulnificus/crecimiento & desarrollo
7.
PLoS Genet ; 12(4): e1005962, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27035918

RESUMEN

Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across experimental conditions ranging from optimal growth in vitro to intracellular growth in host cells. These data establish an extensive repertoire of transcription units and non-coding RNAs, a classification of 1412 promoters according to their dependence on the RNA polymerase sigma factors SigA or SigB, and allow identification of new potential targets for several known transcription factors. In particular, this study revealed a relatively low abundance of antisense RNAs in S. aureus, where they overlap only 6% of the coding genes, and only 19 antisense RNAs not co-transcribed with other genes were found. Promoter analysis and comparison with Bacillus subtilis links the small number of antisense RNAs to a less profound impact of alternative sigma factors in S. aureus. Furthermore, we revealed that Rho-dependent transcription termination suppresses pervasive antisense transcription, presumably originating from abundant spurious transcription initiation in this A+T-rich genome, which would otherwise affect expression of the overlapped genes. In summary, our study provides genome-wide information on transcriptional regulation and non-coding RNAs in S. aureus as well as new insights into the biological function of Rho and the implications of spurious transcription in bacteria.


Asunto(s)
Staphylococcus aureus/genética , Transcriptoma , Sitios de Unión , Northern Blotting , Expresión Génica , Genes Bacterianos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
8.
Int J Med Microbiol ; 308(6): 569-581, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29454809

RESUMEN

Lipoproteins are attached to the outer leaflet of the membrane by a di- or tri-acylglyceryl moiety and are thus positioned in the membrane-cell wall interface. Consequently, lipoproteins are involved in many surface associated functions, including cell wall synthesis, electron transport, uptake of nutrients, surface stress response, signal transduction, and they represent a reservoir of bacterial virulence factors. Inspection of 123 annotated Staphylococcus aureus genome sequences in the public domain revealed that this organism devotes about 2-3% of its coding capacity to lipoproteins, corresponding to about 70 lipoproteins per genome. 60 of these lipoproteins were identified in 95% of the genomes analyzed, which thus constitute the core lipoproteome of S. aureus. 30% of the conserved staphylococcal lipoproteins are substrate-binding proteins of ABC transporters with roles in nutrient transport. With a few exceptions, much less is known about the function of the remaining lipoproteins, representing a large gap in our knowledge of this functionally important group of proteins. Here, we summarize current knowledge, and integrate information from genetic context analysis, expression and regulatory data, domain architecture, sequence and structural information, and phylogenetic distribution to provide potential starting points for experimental evaluation of the biological function of the poorly or uncharacterized lipoproteome of S. aureus.


Asunto(s)
Proteínas Bacterianas/química , Lipoproteínas/química , Proteoma , Staphylococcus aureus/química , Staphylococcus aureus/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Transporte Biológico , Membrana Celular , Pared Celular/química , Genoma Bacteriano , Lipoproteínas/genética , Filogenia , Factores de Virulencia/química , Factores de Virulencia/genética
9.
Int J Med Microbiol ; 308(6): 664-674, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29941384

RESUMEN

Staphylococcus aureus, an opportunistic pathogen is able to invade into and persist inside non-professional phagocytic cells. To do so, this bacterium possesses a wide range of secreted virulence factors which enable attachment to the host as well as intracellular survival. Hence, a monitoring of virulence factors specifically produced upon internalization might reveal targets for prevention or therapy of S. aureus infections. However, previous proteome approaches enriching S. aureus from lysed host cells after infection did not cover secreted virulence factors. Therefore, we used density gradient centrifugation and mass spectrometry to identify S. aureus HG001 proteins which were secreted into compartments of infected human bronchial epithelial S9 cells. Because shotgun mass spectrometry revealed only few bacterial proteins amongst 1905 host proteins, we used highly sensitive and selective single reaction monitoring mass spectrometry as an alternative approach and quantified 37 bacterial proteins within the S. aureus containing host cell compartment 2.5 h and 6.5 h post infection. Among them were secreted bacterial virulence factors like lipases, pore forming toxins, and secreted adhesins which are usually hard to detect from infected sample material by proteomics approaches due to their low abundance. S. aureus adapted its proteome to improve its response to oxidative and cell wall stress occurring inside the host, but also, increased the amounts of some adhesins and pore-forming toxins, required for attachment and host cell lysis.


Asunto(s)
Proteínas Bacterianas/análisis , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno , Staphylococcus aureus/química , Transporte Biológico , Bronquios/citología , Bronquios/microbiología , Línea Celular , Células Cultivadas , Centrifugación por Gradiente de Densidad , Humanos , Espectrometría de Masas , Proteoma/análisis , Proteómica , Factores de Virulencia/análisis
10.
Int J Med Microbiol ; 308(6): 558-568, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29198880

RESUMEN

In light of continuously accumulating data and knowledge on major human pathogens, comprehensive and up-to-date sources of easily accessible information are urgently required. The AureoWiki database (http://aureowiki.med.uni-greifswald.de) provides detailed information on the genes and proteins of clinically and experimentally relevant S. aureus strains, currently covering NCTC 8325, COL, Newman, USA300_FPR3757, and N315. By implementing a pan-genome approach, AureoWiki facilitates the transfer of knowledge gained in studies with different S. aureus strains, thus supporting functional annotation and better understanding of this organism. All data related to a given gene or gene product is compiled on a strain-specific gene page. The gene pages contain sequence-based information complemented by data on, for example, protein function and localization, transcriptional regulation, and gene expression. The information provided is connected via links to other databases and published literature. Importantly, orthologous genes of the individual strains, which are linked by a pan-genome gene identifier and a unified gene name, are presented side by side using strain-specific tabs. The respective pan-genome gene page contains an orthologue table for 32 S. aureus strains, a multiple-strain genome viewer, a protein sequence alignment as well as other comparative information. The data collected in AureoWiki is also accessible through various download options in order to support bioinformatics applications. In addition, based on two large-scale gene expression data sets, AureoWiki provides graphical representations of condition-dependent mRNA levels and protein profiles under various laboratory and infection-related conditions.


Asunto(s)
Proteínas Bacterianas , Bases de Datos como Asunto , Genes Bacterianos , Anotación de Secuencia Molecular , Staphylococcus aureus/genética , Biología Computacional , Genoma Bacteriano , Internet , Infecciones Estafilocócicas/microbiología
11.
Subcell Biochem ; 83: 1-41, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28271471

RESUMEN

The stressosome is a multi-protein signal integration and transduction hub found in a wide range of bacterial species. The role that the stressosome plays in regulating the transcription of genes involved in the general stress response has been studied most extensively in the Gram-positive model organism Bacillus subtilis. The stressosome receives and relays the signal(s) that initiate a complex phosphorylation-dependent partner switching cascade, resulting in the activation of the alternative sigma factor σB. This sigma factor controls transcription of more than 150 genes involved in the general stress response. X-ray crystal structures of individual components of the stressosome and single-particle cryo-EM reconstructions of stressosome complexes, coupled with biochemical and single cell analyses, have permitted a detailed understanding of the dynamic signalling behaviour that arises from this multi-protein complex. Furthermore, bioinformatics analyses indicate that genetic modules encoding key stressosome proteins are found in a wide range of bacterial species, indicating an evolutionary advantage afforded by stressosome complexes. Interestingly, the genetic modules are associated with a variety of signalling modules encoding secondary messenger regulation systems, as well as classical two-component signal transduction systems, suggesting a diversification in function. In this chapter we review the current research into stressosome systems and discuss the functional implications of the unique structure of these signalling complexes.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transducción de Señal , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Fosforilación , Factor sigma/agonistas , Factor sigma/metabolismo
12.
Proteomics ; 16(20): 2667-2677, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27324828

RESUMEN

Staphylococcus aureus is a frequent commensal but also a dangerous pathogen, causing many forms of infection ranging from mild to life-threatening conditions. Among its virulence factors are lipoproteins, which are anchored in the bacterial cell membrane. Lipoproteins perform various functions in colonization, immune evasion, and immunomodulation. These proteins are potent activators of innate immune receptors termed Toll-like receptors 2 and 6. This study addressed the specific B-cell and T-cell responses directed to lipoproteins in human S. aureus carriers and non-carriers. 2D immune proteomics and ELISA approaches revealed that titers of antibodies (IgG) binding to S. aureus lipoproteins were very low. Proliferation assays and cytokine profiling data showed only subtle responses of T cells; some lipoproteins did not elicit proliferation. Hence, the robust activation of the innate immune system by S. aureus lipoproteins does not translate into a strong adaptive immune response. Reasons for this may include inaccessibility of lipoproteins for B cells as well as ineffective processing and presentation of the antigens to T cells.


Asunto(s)
Inmunidad Adaptativa , Linfocitos B/inmunología , Proteínas Bacterianas/inmunología , Lipoproteínas/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Linfocitos T/inmunología , Adulto , Linfocitos B/microbiología , Células Cultivadas , Citocinas/inmunología , Femenino , Regulación de la Expresión Génica , Voluntarios Sanos , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Proteoma/inmunología , Proteómica , Infecciones Estafilocócicas/microbiología , Linfocitos T/microbiología , Factores de Virulencia/inmunología , Adulto Joven
13.
Int J Med Microbiol ; 306(3): 131-40, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26996810

RESUMEN

The translation inhibitor linezolid is an antibiotic of last resort against Gram-positive pathogens including methicillin resistant strains of the nosocomial pathogen Staphylococcus aureus. Linezolid is reported to inhibit production of extracellular virulence factors, but the molecular cause is unknown. To elucidate the physiological response of S. aureus to linezolid in general and the inhibition of virulence factor synthesis in particular a holistic study was performed. Linezolid was added to exponentially growing S. aureus cells and the linezolid stress response was analyzed with transcriptomics and quantitative proteomics methods. In addition, scanning and transmission electron microscopy experiments as well as fluorescence microscopy analyses of the cellular DNA and membrane were performed. As previously observed in studies on other translation inhibitors, S. aureus adapts its protein biosynthesis machinery to the reduced translation efficiency. For example the synthesis of ribosomal proteins was induced. Also unexpected results like a decline in the amount of extracellular and membrane proteins were obtained. In addition, cell shape and size changed after linezolid stress and cell division was diminished. Finally, the chromosome was condensed after linezolid stress and lost contact to the membrane. These morphological changes cannot be explained by established theories. A new hypothesis is discussed, which suggests that the reduced amount of membrane and extracellular proteins and observed defects in cell division are due to the disintegration of transertion complexes by linezolid.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Linezolid/farmacología , Staphylococcus aureus/efectos de los fármacos , Factores de Virulencia/biosíntesis , Antibacterianos/farmacología , ADN Bacteriano/genética , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteómica , Staphylococcus aureus/metabolismo , Transcriptoma
14.
Mol Microbiol ; 93(6): 1259-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25074408

RESUMEN

With about 25 000 molecules per cell, Asp23 is one of the most abundant proteins in Staphylococcus aureus. Asp23 has been characterized as a protein that, following an alkaline shock, accumulates in the soluble protein fraction. Transcription of the asp23 gene is exclusively regulated by the alternative sigma factor σ(B) , which controls the response of the bacterium to environmental stress. Sequence analysis identified Asp23 as a member of the widely distributed Pfam DUF322 family, precluding functional predictions based on its sequence. Using fluorescence microscopy we found that Asp23 colocalized with the cell membrane of Staphylococcus aureus. Since Asp23 has no recognizable transmembrane spanning domains, we initiated a search for proteins that link Asp23 to the cell membrane. We identified SAOUHSC_02443 as the Asp23 membrane anchor and have renamed it AmaP (Asp23 membrane anchoring protein). Deletion of the asp23 gene led to an upregulation of the cell wall stress response. In summary, we have identified Asp23 as a membrane-associated protein and we suggest a function for Asp23 in cell envelope homoeostasis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/genética , Staphylococcus aureus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Staphylococcus aureus/citología , Staphylococcus aureus/genética
15.
Int J Med Microbiol ; 304(2): 177-87, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24480029

RESUMEN

Staphylococcus aureus is a versatile pathogen that can be a commensal but also cause a wide range of different infections. This broad disease spectrum is a reflection of the complex regulation of a large collection of virulence factors that together with metabolic fitness allow adaptation to different niches. The alternative sigma factor SigB is one of the global regulators mediating this adaptation. However, even if SigB contributes to expression of many virulence factors its importance for successful infection greatly varies with the strain and the infection setting analyzed. We have recently established a proteomics workflow that combines high efficiency cell sorting with sensitive mass spectrometry and allows monitoring of global proteome adaptations with roughly one million bacterial cells. Thus, we can now approach the adaptation of pathogens to the intracellular milieu. In the current study this proteomics workflow was used in conjunction with qRT-PCR and confocal fluorescence microscopy to comparatively analyze the adaptation of the S. aureus wild type strain HG001 and its isogenic sigB mutant to the intracellular milieu of human S9 bronchial epithelial cells. The study revealed fast and transient activation of SigB following internalization by human host cells and the requirement of SigB for intracellular growth. Loss of SigB triggered proteome changes reflecting the different residual growth rates of wild type and sigB mutant, respectively, the resistance to methicillin, adaptation to oxidative stress and protein quality control mechanisms.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Endocitosis , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno , Proteoma/análisis , Factor sigma/biosíntesis , Staphylococcus aureus/fisiología , Adaptación Fisiológica , Proteínas Bacterianas/genética , Línea Celular , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor sigma/genética
16.
FASEB J ; 27(11): 4476-88, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23901070

RESUMEN

Antimicrobial peptides are a promising complement to common antibiotics, development of resistance to which is a growing problem. Here we present a de novo-designed peptide, SP1-1 (RKKRLKLLKRLL-NH2), with antimicrobial activity against multiresistant Staphylococcus aureus (minimal inhibitory concentration: 6.25 µM). Elucidation of the mode of action of this peptide revealed a strong interaction with RsbW kinase (Kd: 6.01±2.73 nM), a serine kinase negatively regulating the activity of the transcription factor σB (SigB). SP1-1 binding and functional modulation of RsbW were shown in vitro by a combination of biochemical, molecular, and biophysical methods, which were further genetically evidenced in vivo by analysis of S. aureus ΔsigB deletion mutants. Intracellular localization of the peptide was demonstrated using nanometer-scaled secondary ion mass spectrometry. Moreover, microarray analysis revealed that transcription of numerous genes, involved in cell wall and amino acid metabolism, transport mechanisms, virulence, and pigmentation, is affected. Interestingly, several WalR binding motif containing genes are induced by SP1-1. In sum, the designed peptide SP1-1 seems to have multiple modes of action, including inhibition of a kinase, and therefore might contribute to the development of new antibacterial compounds, giving bacterial kinase inhibition a closer inspection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Portadoras/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Relación Dosis-Respuesta a Droga , Datos de Secuencia Molecular , Mutación , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Transcripción Genética/efectos de los fármacos , Virulencia/genética
17.
Nat Commun ; 15(1): 5797, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987236

RESUMEN

The basal structure of the bacterial flagellum includes a membrane embedded MS-ring (formed by multiple copies of FliF) and a cytoplasmic C-ring (composed of proteins FliG, FliM and FliN). The SRP-type GTPase FlhF is required for directing the initial flagellar protein FliF to the cell pole, but the mechanisms are unclear. Here, we show that FlhF anchors developing flagellar structures to the polar landmark protein HubP/FimV, thereby restricting their formation to the cell pole. Specifically, the GTPase domain of FlhF interacts with HubP, while a structured domain at the N-terminus of FlhF binds to FliG. FlhF-bound FliG subsequently engages with the MS-ring protein FliF. Thus, the interaction of FlhF with HubP and FliG recruits a FliF-FliG complex to the cell pole. In addition, the modulation of FlhF activity by the MinD-type ATPase FlhG controls the interaction of FliG with FliM-FliN, thereby regulating the progression of flagellar assembly at the pole.


Asunto(s)
Proteínas Bacterianas , Flagelos , Flagelos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Proteica , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de la Membrana
18.
Microbiologyopen ; 12(5): e1379, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37877661

RESUMEN

Rifampicin resistance, which is genetically linked to mutations in the RNA polymerase ß-subunit gene rpoB, has a global impact on bacterial transcription and cell physiology. Previously, we identified a substitution of serine 522 in RpoB (i.e., RpoBS522L ) conferring rifampicin resistance to Vibrio vulnificus, a human food-borne and wound-infecting pathogen associated with a high mortality rate. Transcriptional and physiological analysis of V. vulnificus expressing RpoBS522L showed increased basal transcription of stress-related genes and global virulence regulators. Phenotypically these transcriptional changes manifest as disturbed osmo-stress responses and toxin-associated hypervirulence as shown by reduced hypoosmotic-stress resistance and enhanced cytotoxicity of the RpoBS522L strain. These results suggest that RpoB-linked rifampicin resistance has a significant impact on V. vulnificus survival in the environment and during infection.


Asunto(s)
Rifampin , Vibrio vulnificus , Humanos , Rifampin/farmacología , Vibrio vulnificus/genética , Proteínas Bacterianas/genética , Mutación , Virulencia/genética , ARN Polimerasas Dirigidas por ADN/genética
19.
Access Microbiol ; 5(7)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601438

RESUMEN

The stressosome is a protein complex that senses environmental stresses and mediates the stress response in several Gram-positive bacteria through the activation of the alternative sigma factor SigB. The stressosome locus is found in 44 % of Gram-negative Vibrio vulnificus isolates. However, V. vulnificus does not possess SigB. Nonetheless, in nutrient-limited media, the stressosome modulates gene transcription and bacterial behaviour. In this work, the expression of the stressosome genes was proven during stationary phase in nutrient-rich media and co-transcription as one operonic unit of the stressosome locus and its putative downstream regulatory locus was demonstrated. The construction of a stressosome mutant lacking the genes encoding the four proteins constituting the stressosome complex (VvRsbR, VvRsbS, VvRsbT, VvRsbX) allowed us to examine the role of this complex in vivo. Extensive phenotypic characterization of the ΔRSTX mutant in nutrient-rich media showed that the stressosome does not contribute to growth of V. vulnificus . Moreover, the stressosome did not modulate the tolerance or survival response of V. vulnificus to the range of stresses tested, which included ethanol, hyperosmolarity, hypoxia, high temperature, acidity and oxidative stress. Furthermore, the stressosome was dispensable for motility and exoenzyme production of V. vulnificus in nutrient-rich media. Therefore, in conclusion, although stressosome gene transcription occurs in nutrient-rich media, the stressosome neither has an essential role in stress responses of V. vulnificus nor does it seem to modulate these activities in these conditions. We hypothesise that the stressosome is expressed in nutrient-rich conditions as a sensor complex, but that activation of the complex does not occur in this environment.

20.
Curr Res Microb Sci ; 4: 100186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936406

RESUMEN

Stressosomes are signal-sensing and integration hubs identified in many bacteria. At present, the role of the stressosome has only been investigated in Gram-positive bacteria. This work represents the first in vivo characterisation of the stressosome in a Gram-negative bacterium, Vibrio vulnificus. Previous in vitro characterisation of the complex has led to the hypothesis of a complex involved in iron metabolism and control of c-di-GMP levels. We demonstrate that the stressosome is probably involved in reshaping the glucose metabolism in Fe- and nutrient-limited conditions and mutations of the locus affect the activation of the glyoxylate shunt. Moreover, we show that the stressosome is needed for the transcription of fleQ and to promote motility, consistent with the hypothesis that the stressosome is involved in regulating c-di-GMP. This report highlights the potential role of the stressosome in a Gram-negative bacterium, with implications for the metabolism and motility of this pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA