Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Br J Cancer ; 128(4): 519-527, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36402876

RESUMEN

UK Biobank is a large-scale prospective study with deep phenotyping and genomic data. Its open-access policy allows researchers worldwide, from academia or industry, to perform health research in the public interest. Between 2006 and 2010, the study recruited 502,000 adults aged 40-69 years from the general population of the United Kingdom. At enrolment, participants provided information on a wide range of factors, physical measurements were taken, and biological samples (blood, urine and saliva) were collected for long-term storage. Participants have now been followed up for over a decade with more than 52,000 incident cancer cases recorded. The study continues to be enhanced with repeat assessments, web-based questionnaires, multi-modal imaging, and conversion of the stored biological samples to genomic and other '-omic' data. The study has already demonstrated its value in enabling research into the determinants of cancer, and future planned enhancements will make the resource even more valuable to cancer researchers. Over 26,000 researchers worldwide are currently using the data, performing a wide range of cancer research. UK Biobank is uniquely placed to transform our understanding of the causes of cancer development and progression, and drive improvements in cancer treatment and prevention over the coming decades.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias , Adulto , Humanos , Estudios Prospectivos , Encuestas y Cuestionarios , Reino Unido/epidemiología
2.
Plant J ; 74(5): 829-39, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23517128

RESUMEN

Recent advances have highlighted the ubiquity of whole-genome duplication (polyploidy) in angiosperms, although subsequent genome size change and diploidization (returning to a diploid-like condition) are poorly understood. An excellent system to assess these processes is provided by Nicotiana section Repandae, which arose via allopolyploidy (approximately 5 million years ago) involving relatives of Nicotiana sylvestris and Nicotiana obtusifolia. Subsequent speciation in Repandae has resulted in allotetraploids with divergent genome sizes, including Nicotiana repanda and Nicotiana nudicaulis studied here, which have an estimated 23.6% genome expansion and 19.2% genome contraction from the early polyploid, respectively. Graph-based clustering of next-generation sequence data enabled assessment of the global genome composition of these allotetraploids and their diploid progenitors. Unexpectedly, in both allotetraploids, over 85% of sequence clusters (repetitive DNA families) had a lower abundance than predicted from their diploid relatives; a trend seen particularly in low-copy repeats. The loss of high-copy sequences predominantly accounts for the genome downsizing in N. nudicaulis. In contrast, N. repanda shows expansion of clusters already inherited in high copy number (mostly chromovirus-like Ty3/Gypsy retroelements and some low-complexity sequences), leading to much of the genome upsizing predicted. We suggest that the differential dynamics of low- and high-copy sequences reveal two genomic processes that occur subsequent to allopolyploidy. The loss of low-copy sequences, common to both allopolyploids, may reflect genome diploidization, a process that also involves loss of duplicate copies of genes and upstream regulators. In contrast, genome size divergence between allopolyploids is manifested through differential accumulation and/or deletion of high-copy-number sequences.


Asunto(s)
Diploidia , Tamaño del Genoma , Genoma de Planta/genética , Poliploidía , Duplicaciones Segmentarias en el Genoma/genética , Análisis por Conglomerados , Evolución Molecular , Especiación Genética , Variación Genética , Hibridación in Situ , Especificidad de la Especie , Factores de Tiempo , Nicotiana/clasificación , Nicotiana/genética
3.
J Exp Biol ; 216(Pt 21): 4047-53, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23913946

RESUMEN

Feeding in starfish is a remarkable process in which the cardiac stomach is everted over prey and then retracted when prey tissue has been resorbed. Previous studies have revealed that SALMFamide-type neuropeptides trigger cardiac stomach relaxation and eversion in the starfish Asterias rubens. We hypothesized, therefore, that a counteracting neuropeptide system controls cardiac stomach contraction and retraction. Members of the NG peptide family cause muscle contraction in other echinoderms (e.g. NGFFFamide in sea urchins and NGIWYamide in sea cucumbers), so we investigated NG peptides as candidate regulators of cardiac stomach retraction in starfish. Generation and analysis of neural transcriptome sequence data from A. rubens revealed a precursor protein comprising two copies of a novel NG peptide, NGFFYamide, which was confirmed by mass spectrometry. A noteworthy feature of the NGFFYamide precursor is a C-terminal neurophysin domain, indicative of a common ancestry with vasopressin/oxytocin-type neuropeptide precursors. Interestingly, in precursors of other NG peptides the neurophysin domain has been retained (e.g. NGFFFamide) or lost (e.g. NGIWYamide and human neuropeptide S) and its functional significance remains to be determined. Investigation of the pharmacological actions of NGFFYamide in starfish revealed that it is a potent stimulator of cardiac stomach contraction in vitro and that it triggers cardiac stomach retraction in vivo. Thus, discovery of NGFFYamide provides a novel insight into neural regulation of cardiac stomach retraction as well as a rationale for chemically based strategies to control starfish that feed on economically important shellfish (e.g. mussels) or protected marine fauna (e.g. coral).


Asunto(s)
Asterias/genética , Neuropéptidos/genética , Secuencia de Aminoácidos , Animales , Asterias/metabolismo , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Masculino , Espectrometría de Masas , Datos de Secuencia Molecular , Neuropéptidos/química , Neuropéptidos/metabolismo , Neurofisinas/química , Neurofisinas/genética , Neurofisinas/metabolismo , ARN/análisis , Estómago/fisiología
4.
Open Biol ; 6(2): 150224, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26865025

RESUMEN

Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an 'intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.


Asunto(s)
Evolución Molecular , Perfilación de la Expresión Génica , Neuropéptidos/genética , Estrellas de Mar/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Alineación de Secuencia , Estrellas de Mar/clasificación
5.
Front Syst Neurosci ; 7: 65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24133417

RESUMEN

Deficits in impulse control (difficulties in inhibition of a pre-potent response) are fundamental to a number of psychiatric disorders, but the molecular and cellular basis is poorly understood. Zebrafish offer a very useful model for exploring these mechanisms, but there is currently a lack of validated procedures for measuring impulsivity in fish. In mammals, impulsivity can be measured by examining rates of anticipatory responding in the 5-choice serial reaction time task (5-CSRTT), a continuous performance task where the subject is reinforced upon accurate detection of a briefly presented light in one of five distinct spatial locations. This paper describes the development of a fully-integrated automated system for testing impulsivity in adult zebrafish. We outline the development of our image analysis software and its integration with National Instruments drivers and actuators to produce the system. We also describe an initial validation of the system through a one-generation screen of chemically mutagenized zebrafish, where the testing parameters were optimized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA