RESUMEN
Plants interact with arbuscular mycorrhizal fungi (AMF) and in doing so, change transcript levels of many miRNAs and their targets. However, the identity of an Argonaute (AGO) that modulates this interaction remains unknown, including in Nicotiana attenuata. We examined how the silencing of NaAGO1/2/4/7/and 10 by RNAi influenced plant-competitive ability under low-P conditions when they interact with AMF. Furthermore, the roles of seven miRNAs, predicted to regulate signaling and phosphate homeostasis, were evaluated by transient overexpression. Only NaAGO7 silencing by RNAi (irAGO7) significantly reduced the competitive ability under P-limited conditions, without changes in leaf or root development, or juvenile-to-adult phase transitions. In plants growing competitively in the glasshouse, irAGO7 roots were over-colonized with AMF, but they accumulated significantly less phosphate and the expression of their AMF-specific transporters was deregulated. Furthermore, the AMF-induced miRNA levels were inversely regulated with the abundance of their target transcripts. miRNA overexpression consistently decreased plant fitness, with four of seven-tested miRNAs reducing mycorrhization rates, and two increasing mycorrhization rates. Overexpression of Na-miR473 and Na-miRNA-PN59 downregulated targets in GA, ethylene, and fatty acid metabolism pathways. We infer that AGO7 optimizes competitive ability and colonization by regulating miRNA levels and signaling pathways during a plant's interaction with AMF.
Asunto(s)
MicroARNs , Micorrizas , Nicotiana/metabolismo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfatos/metabolismoRESUMEN
Argonautes (AGOs) associate with noncoding RNAs to regulate gene expression during development and stress adaptation. Their role in plant immunity against hemibiotrophic fungal infection remains poorly understood. Here, we explore the function of AGOs in the interaction of wild tobacco (Nicotiana attenuata) with a naturally occurring hemibiotrophic pathogen, Fusarium brachygibbosum Among all AGOs, only transcripts of AGO4 were elicited after fungal infection. The disease progressed more rapidly in AGO4-silenced (irAGO4) plants than in wild type, and small RNA (smRNA) profiling revealed that 24-nucleotide smRNA accumulation was severely abrogated in irAGO4 plants. Unique microRNAs (miRNAs: 130 conserved and 208 novel, including 11 canonical miRNA sequence variants known as "isomiRs") were identified in infected plants; silencing of AGO4 strongly changed miRNA accumulation dynamics. Time-course studies revealed that infection increased accumulation of abscisic acid, jasmonates, and salicylic acid in wild type; in irAGO4 plants, infection accumulated lower jasmonate levels and lower transcripts of jasmonic acid (JA) biosynthesis genes. Treating irAGO4 plants with JA, methyl jasmonate, or cis-(+)-12-oxo-phytodienoic acid restored wild-type levels of resistance. Silencing expression of RNA-directed RNA polymerases RdR1 and RdR2 (but not RdR3) and Dicer-like3 (DCL3, but not DCL2 or DCL4) increased susceptibility to F brachygibbosum The relevance of AGO4, RdR1, RdR2, and DCL3 in a natural setting was revealed when plants individually silenced in their expression (and their binary combinations) were planted in a diseased field plot in the Great Basin Desert of Utah. These plants were more susceptible to infection and accumulated lower JA levels than wild type. We infer that AGO4-dependent smRNAs play a central role in modulating JA biogenesis and signaling during hemibiotrophic fungal infections.
Asunto(s)
Proteínas Argonautas/metabolismo , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/fisiología , Oxilipinas/metabolismo , Proteínas Argonautas/genética , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transducción de Señal/genética , Transducción de Señal/fisiología , Sudoeste de Estados UnidosRESUMEN
Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.
Asunto(s)
Nicotiana/genética , Nicotina/biosíntesis , Alcaloides/biosíntesis , Secuencia de Bases , Vías Biosintéticas/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nicotina/genética , Nicotina/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: Nicotiana attenuata is an ecological model plant whose 2.57 Gb genome has recently been sequenced and assembled and for which miRNAs and their genomic locations have been identified. To understand how this plant's miRNAs are reconfigured during plant-arbuscular mycorrhizal fungal (AMF) interactions and whether hostplant calcium- and calmodulin dependent protein kinase (CCaMK) expression which regulates the AMF interaction also modulates miRNAs levels and regulation, we performed a large-scale miRNA analysis of this plant-AMF interaction. RESULTS: Next generation sequencing of miRNAs in roots of empty vector (EV) N. attenuata plants and an isogenic line silenced in CCaMK expression (irCCaMK) impaired in AMF-interactions grown under competitive conditions with and without AMF inoculum revealed a total of 149 unique miRNAs: 67 conserved and 82 novel ones. The majority of the miRNAs had a length of 21 nucleotides. MiRNA abundances were highly variable ranging from 400 to more than 25,000 reads per million. The miRNA profile of irCCaMK plants impaired in AMF colonization was distinct from fully AMF-functional EV plants grown in the same pot. Six conserved miRNAs were present in all conditions and accumulated differentially depending on treatment and genotype; five (miR6153, miR403a-3p, miR7122a, miR167-5p and miR482d, but not miR399a-3p) showed the highest accumulation in AMF inoculated EV plants compared to inoculated irCCaMK plants. Furthermore, the accumulation patterns of sequence variants of selected conserved miRNAs showed a very distinct pattern related to AMF colonization - one variant of miR473-5p specifically accumulated in AMF-inoculated plants. Also abundances of miR403a-3p, miR171a-3p and one of the sequence variants of miR172a-3p increased in AMF-inoculated EV compared to inoculated irCCaMK plants and to non-inoculated EV plants, while miR399a-3p was most strongly enriched in AMF inoculated irCCaMK plants grown in competition with EV. The analysis of putative targets of selected miRNAs revealed an involvement in P starvation (miR399), phytohormone signaling (Nat-R-PN59, miR172, miR393) and defense (e.g. miR482, miR8667, Nat-R-PN-47). CONCLUSIONS: Our study demonstrates (1) a large-scale reprograming of miRNAs induced by AMF colonization and (2) that the impaired AMF signaling due to CCaMK silencing and the resulting reduced competitive ability of irCCaMK plants play a role in modulating signal-dependent miRNA accumulation.
Asunto(s)
MicroARNs/metabolismo , Micorrizas/fisiología , Nicotiana/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Genotipo , MicroARNs/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis , Nicotiana/metabolismo , Nicotiana/microbiología , TranscriptomaRESUMEN
In Nicotiana attenuata, specific RNA-directed RNA polymerase (RdR1) and the Dicer-like (DCL3 and DCL4) proteins are recruited during herbivore attack to mediate the regulation of defense responses. However, the identity and role(s) of Argonautes (AGOs) involved in herbivory remain unknown. Of the 11 AGOs in the N. attenuata genome, we silenced the expression of 10. Plants silenced in NaAGO8 expression grew normally but were highly susceptible to herbivore attack. Larvae of Manduca sexta grew faster when consuming inverted-repeat stable transformants (irAGO8) plants but did not differ from the wild type when consuming plants silenced in AGO1 (a, b, and c), AGO2, AGO4 (a and b), AGO7, or AGO10 expression. irAGO8 plants were significantly compromised in herbivore-induced levels of defense metabolites such as nicotine, phenolamides, and diterpenoid glycosides. Time-course analyses revealed extensively altered microRNA profiles and the reduced accumulation of MYB8 transcripts and of the associated genes of the phenolamide and phenylpropanoid pathways as well as the nicotine biosynthetic pathway. A possible AGO8-modulated microRNA-messenger RNA target network was inferred. Furthermore, comparative analysis of domains revealed the diversity of AGO conformations, particularly in the small RNA-binding pocket, which may influence substrate recognition/binding and functional specificity. We infer that AGO8 plays a central role in the induction of direct defenses by modulating several regulatory nodes in the defense signaling network during herbivore response. Thus, our study identifies the effector AGO of the herbivore-induced small RNA machinery, which in N. attenuata now comprises RdR1, DCL3/4, and AGO8.
Asunto(s)
Proteínas Argonautas/metabolismo , Manduca/fisiología , Modelos Estructurales , Nicotiana/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/genética , Herbivoria , Larva , MicroARNs/genética , Filogenia , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos , ARN Mensajero/genética , ARN de Planta/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Alineación de Secuencia , Nicotiana/inmunología , Nicotiana/parasitologíaRESUMEN
Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat.
Asunto(s)
Ascomicetos/fisiología , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Transducción de Señal , Triticum/fisiología , Ascomicetos/citología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Endogamia , Anotación de Secuencia Molecular , Oxilipinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Ácido Salicílico/metabolismo , Triticum/genética , Triticum/inmunologíaRESUMEN
BACKGROUND: Argonaute (AGO) proteins form the core of the RNA-induced silencing complex, a central component of the smRNA machinery. Although reported from several plant species, little is known about their evolution. Moreover, these genes have not yet been cloned from the ecological model plant, Nicotiana attenuata, in which the smRNA machinery is known to mediate important ecological traits. RESULTS: Here, we not only identify 11 AGOs in N. attenuata, we further annotate 133 genes in 17 plant species, previously not annotated in the Phytozome database, to increase the number of plant AGOs to 263 genes from 37 plant species. We report the phylogenetic classification, expansion, and diversification of AGOs in the plant kingdom, which resulted in the following hypothesis about their evolutionary history: an ancestral AGO underwent duplication events after the divergence of unicellular green algae, giving rise to four major classes with subsequent gains/losses during the radiation of higher plants, resulting in the large number of extant AGOs. Class-specific signatures in the RNA-binding and catalytic domains, which may contribute to the functional diversity of plant AGOs, as well as context-dependent changes in sequence and domain architecture that may have consequences for gene function were found. CONCLUSIONS: Together, the results demonstrate that the evolution of AGOs has been a dynamic process producing the signatures of functional diversification in the smRNA pathways of higher plants.
Asunto(s)
Proteínas Argonautas/genética , Evolución Molecular , Proteínas de Plantas/genética , Plantas/genética , Secuencia de Aminoácidos , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismoRESUMEN
BACKGROUND: Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making the high-throughput target identification a main limiting factor in defining their function. In plants, several tools have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis. Nor, these have not been evaluated for their suitability for high-throughput target prediction at genome level. RESULTS: We evaluated the performance of 11 computational tools in identifying genome-wide targets in Arabidopsis and other plants with procedures that optimized score-cutoffs for estimating targets. Targetfinder was most efficient [89% 'precision' (accuracy of prediction), 97% 'recall' (sensitivity)] in predicting 'true-positive' targets in Arabidopsis miRNA-mRNA interactions. In contrast, only 46% of true positive interactions from non-Arabidopsis species were detected, indicating low 'recall' values. Score optimizations increased the 'recall' to only 70% (corresponding 'precision': 65%) for datasets of true miRNA-mRNA interactions in species other than Arabidopsis. Combining the results of Targetfinder and psRNATarget delivers high true positive coverage, whereas the intersection of psRNATarget and Tapirhybrid outputs deliver highly 'precise' predictions. The large number of 'false negative' predictions delivered from non-Arabidopsis datasets by all the available tools indicate the diversity in miRNAs-mRNA interaction features between Arabidopsis and other species. A subset of miRNA-mRNA interactions differed significantly for features in seed regions as well as the total number of matches/mismatches. CONCLUSION: Although, many plant miRNA target prediction tools may be optimized to predict targets with high specificity in Arabidopsis, such optimized thresholds may not be suitable for many targets in non-Arabidopsis species. More importantly, non-conventional features of miRNA-mRNA interaction may exist in plants indicating alternate mode of miRNA target recognition. Incorporation of these divergent features would enable next-generation of algorithms to better identify target interactions.
Asunto(s)
Arabidopsis/genética , Genoma de Planta , MicroARNs/metabolismo , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/química , ARN Mensajero/química , ARN Mensajero/metabolismo , Curva ROC , Análisis de Secuencia de ARN , TermodinámicaRESUMEN
BACKGROUND: Conceptual parallels exist between bacterial and eukaryotic small-RNA (sRNA) pathways, yet relatively little is known about which protein may recognize and recruit bacterial sRNAs to interact with targets. In eukaryotes, Argonaute (AGO) proteins discharge such functions. The highly conserved bacterial YbeY RNase has structural similarities to the MID domain of AGOs. A limited study had indicated that in Sinorhizobium meliloti the YbeY ortholog regulates the accumulation of sRNAs as well as the target mRNAs, raising the possibility that YbeY may play a previously unrecognized role in bacterial sRNA regulation. RESULTS: We have applied a multipronged approach of loss-of-function studies, genome-wide mRNA and sRNA expression profiling, pathway analysis, target prediction, literature mining and network analysis to unravel YbeY-dependent molecular responses of E. coli exposed to hydroxyurea (HU). Loss of ybeY function, which results in a marked resistance to HU, had global affects on sRNA-mediated gene expression. Of 54 detectable E. coli sRNAs in our microarray analysis, 30 sRNAs showed a differential expression upon HU stress, of which 28 sRNAs displayed a YbeY-dependent change in expression. These included 12 Hfq-dependent and 16 Hfq-independent sRNAs. We successfully identified at least 57 experimentally inferred sRNA-mRNA relationships. Further applying a 'context likelihood of relatedness' algorithm, we reverse engineered the YbeY-dependent Hfq-dependent sRNA-mRNA network as well as YbeY-dependent Hfq-independent sRNA-mRNA network. CONCLUSION: YbeY extensively modulates Hfq-dependent and independent sRNA-mRNA interactions. YbeY-dependent sRNAs have central roles in modulating cellular response to HU stress.
Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , Hidroxiurea/farmacología , Metaloproteínas/genética , ARN Bacteriano/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Proteína de Factor 1 del Huésped/metabolismo , Metaloproteínas/metabolismoRESUMEN
Mining is a major threat to vegetation and soil in the tropical forests. Reforestation of degraded surface mines is critically dependent on the recovery of soil health, where the nematodes play an important role. However, the key determinants of community assembly of soil nematodes during mine-restoration remain unknown in the tropical rainforests. Here, the recovery of taxonomic diversity of nematode communities and their trophic groups during reforestation of an extremely degraded tropical open-mining area is studied. The factors that may impact their recovery, such as root traits (length, area and tissue density), soil properties (pH and soil organic matter content (SOM)), and taxonomic diversities of soil bacterial and fungal communities are investigated. Differences in these parameters were evaluated in the three soil types: (i) mined soil - the erstwhile soil that was removed during mining and stock-piled for 10 years at the foot of an extremely degraded open-mining area; (ii) reforested soil, sampled from a 10-year successful restoration, which used the mined soil for reforestation; and (iii) undisturbed soil, collected from an adjacent undisturbed/not-mined tropical rainforest. A total of 11, 34 and 29 nematode-genera were identified in mined-, undisturbed-, and reforested soils, respectively. The taxonomic diversities of the 5 nematode groups in the mined soil were 1.5-5.2 times lower than in the undisturbed soil, but were similar in the restored and undisturbed soils. Taxonomic diversities of phytophagous and predator nematodes were correlated to restored root traits; whereas of bacterivores, fungivores, and omnivores were correlated to pH, SOM, soil bacterial and fungal communities. Consequently, complete loss of roots during mining likely severely reduced the nematodes, but their recovery after reforestation led to the restoration of taxonomic diversity of nematode communities. The mix-planting fast-growing tree species may be appropriate for recovering soil health, including nematode diversity, during reforestation of open tropical mines.
Asunto(s)
Minería , Nematodos , Raíces de Plantas , Suelo , Suelo/química , Raíces de Plantas/clasificación , Nematodos/clasificación , Bosque Lluvioso , Clima Tropical , Contaminantes del Suelo , Microbiología del Suelo , Biodiversidad , Clasificación , Biodegradación AmbientalRESUMEN
The SMc01113/YbeY protein, belonging to the UPF0054 family, is highly conserved in nearly every bacterium. However, the function of these proteins still remains elusive. Our results show that SMc01113/YbeY proteins share structural similarities with the MID domain of the Argonaute (AGO) proteins, and might similarly bind to a small-RNA (sRNA) seed, making a special interaction with the phosphate on the 5'-side of the seed, suggesting they may form a component of the bacterial sRNA pathway. Indeed, eliminating SMc01113/YbeY expression in Sinorhizobium meliloti produces symbiotic and physiological phenotypes strikingly similar to those of the hfq mutant. Hfq, an RNA chaperone, is central to bacterial sRNA-pathway. We evaluated the expression of 13 target genes in the smc01113 and hfq mutants. Further, we predicted the sRNAs that may potentially target these genes, and evaluated the accumulation of nine sRNAs in WT and smc01113 and hfq mutants. Similar to hfq, smc01113 regulates the accumulation of sRNAs as well as the target mRNAs. AGOs are central components of the eukaryotic sRNA machinery and conceptual parallels between the prokaryotic and eukaryotic sRNA pathways have long been drawn. Our study provides the first line of evidence for such conceptual parallels. Furthermore, our investigation gives insights into the sRNA-mediated regulation of stress adaptation in S. meliloti.
Asunto(s)
Proteínas Bacterianas/fisiología , ARN Pequeño no Traducido/metabolismo , Sinorhizobium meliloti/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/fisiología , Datos de Secuencia Molecular , Mutación , Fenotipo , Complejo Silenciador Inducido por ARN/química , Alineación de Secuencia , Sinorhizobium meliloti/metabolismo , SimbiosisRESUMEN
The two closely related Arabidopsis transcription factors, WRKY18 and WRKY40, play a major and partly redundant role in PAMP-triggered basal defense. We monitored the transcriptional reprogramming induced by the powdery mildew fungus, Golovinomyces orontii, during early stages of infection with respect to the role of WRKY18/40. Expression of >1300 Arabidopsis genes was differentially altered already 8 hours post infection (hpi), indicating rapid pre-penetration signaling between the pathogen and the host. We found that WRKY18/40 negatively affects pre-invasion host defenses and deduced a subset of genes that appear to be under WRKY18/40 control. A mutant lacking the WRKY18/40 repressors executes pathogen-dependent but exaggerated expression of some defense genes leading, for example, to strongly elevated levels of camalexin. This implies that WRKY18/40 act in a feedback repression system controlling basal defense. Moreover, using chromatin immunoprecipitation (ChIP), direct in vivo interactions of WRKY40 to promoter regions containing W box elements of the regulatory gene EDS1, the AP2-type transcription factor gene RRTF1 and to JAZ8, a member of the JA-signaling repressor gene family were demonstrated. Our data support a model in which WRKY18/40 negatively modulate the expression of positive regulators of defense such as CYP71A13, EDS1 and PAD4, but positively modulate the expression of some key JA-signaling genes by partly suppressing the expression of JAZ repressors.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ascomicetos/patogenicidad , Enfermedades de las Plantas/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Indoles/análisis , Mutación , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Transducción de Señal , Tiazoles/análisis , Factores de Transcripción/genéticaRESUMEN
Phytohormones mediate the perception of insect-specific signals and the elicitation of defenses during insect attack. Large-scale changes in a plant's transcriptome ensue, but how these changes are regulated remains unknown. Silencing of RNA-directed RNA polymerase 1 (RdR1) makes Nicotiana attenuata highly susceptible to insect herbivores, suggesting that defense elicitation is under the direct control of small-RNAs (smRNAs). Using 454-sequencing, we characterized N. attenuata's smRNA transcriptome before and after insect-specific elicitation in wild-type (WT) and RdR1-silenced (irRdR1) plants. We predicted the targets of N. attenuata smRNAs in the genes related to phytohormone signaling (jasmonic acid, JA-Ile, and ethylene) known to mediate resistance responses, and we measured the elicited dynamics of phytohormone biosynthetic transcripts and phytohormone levels in time-course experiments with field- and glasshouse-grown plants. RdR1 silencing severely altered the induced transcript accumulation of 8 of the 10 genes, reduced JA, and enhanced ethylene levels after elicitation. Adding JA completely restored the insect resistance of irRdR1 plants. irRdR1 plants had photosynthetic rates, growth, and reproductive output indistinguishable from that of WT plants, suggesting unaltered primary metabolism. We conclude that the susceptibility of irRdR1 plants to herbivores is due to altered phytohormone signaling and that smRNAs play a central role in coordinating the large-scale transcriptional changes that occur after herbivore attack. Given the diversity of smRNAs that are elicited after insect attack and the recent demonstration of the ability of ingested smRNAs to silence transcript accumulation in lepidopteran larvae midguts, the smRNA responses of plants may also function as direct defenses.
Asunto(s)
Conducta Alimentaria/fisiología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Nicotiana/genética , Reguladores del Crecimiento de las Plantas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Animales , Ciclopentanos/farmacología , Etilenos/biosíntesis , Conducta Alimentaria/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genotipo , Larva/efectos de los fármacos , Manduca/efectos de los fármacos , MicroARNs/metabolismo , Datos de Secuencia Molecular , Oxilipinas/farmacología , Fotosíntesis/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Transducción de Señal/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Nicotiana/parasitologíaRESUMEN
miR390 is a highly conserved miRNA in plant lineages known to function in growth and development processes, such as lateral root development, and in responses to salt and metal stress. In the ecological model species, Nicotiana attenuata, miR390's biological function remains unknown, which we explore here with a gain-of-function analysis with plants over-expressing (OE-) N. attenuata miR390 (Na-miR390) in glasshouse and natural environments. OEmiR390 plants showed normal developmental processes, including lateral root formation or reproductive output, in plants grown under standard conditions in the glasshouse. OEmiR390 plants did not have dramatically altered interactions with arbuscular mycorrhizal fungi (AMF), Fusarium pathogens, or herbivores. However, Na-miR390 regulated the plant's tolerance of herbivory. Caterpillar feeding elicits the accumulation of a suite of phytohormones, including auxin and jasmonates, which further regulate host-tolerance. The increase in Na-miR390 abundance reduces the accumulation of auxin but does not influence levels of other phytohormones including jasmonates (JA, JA-Ile), salicylic acid (SA), and abscisic acid (ABA). Na-miR390 overexpression reduces reproductive output, quantified as capsule production, when plants are attacked by herbivores. Exogenous auxin treatments of herbivore-attacked plants restored capsule production to wild-type levels. During herbivory, Na-miR390 transcript abundances are increased; its overexpression reduces the abundances of auxin biosynthesizing YUCCA and ARF (mainly ARF4) transcripts during herbivory. Furthermore, the accumulation of auxin-regulated phenolamide secondary metabolites (caffeoylputrescine, dicaffeoylspermidine) is also reduced. In N. attenuata, miR390 functions in modulating tolerance responses of herbivore-attacked plants.
RESUMEN
In a previous study, we identified a halotolerant rhizobacterium belonging to the genus Klebsiella (MBE02) that protected peanut seeds from Aspergillus flavus infection. Here, we investigated the mechanisms underlying the effect of MBE02 against A. flavus via untargeted metabolite profiling of peanut seeds treated with MBE02, A. flavus, or MBE02+A. flavus. Thirty-five metabolites were differentially accumulated across the three treatments (compared to the control), and the levels of pipecolic acid (Pip) were reduced upon A. flavus treatment only. We validated the function of Pip against A. flavus using multiple resistant and susceptible peanut cultivars. Pip accumulation was strongly associated with the resistant genotypes that also accumulated several mRNAs of the ALD1-like gene in the Pip biosynthesis pathway. Furthermore, exogenous treatment of a susceptible peanut cultivar with Pip reduced A. flavus infection in the seeds. Our findings indicate that Pip is a key component of peanut resistance to A. flavus.
Asunto(s)
Arachis , Aspergillus flavus , Aspergillus flavus/genética , Ácidos Pipecólicos , SemillasRESUMEN
There exist commonalities between symbiotic Sinorhizobium meliloti and pathogenic Brucella bacteria in terms of extensive gene synteny and the requirements for intracellular survival in their respective hosts. The RNA chaperone Hfq is essential for virulence for several bacterial groups, including Brucella; however, its role in S. meliloti has not been investigated. Our studies of an S. meliloti loss-of-function hfq mutant have revealed that Hfq plays a key role in the establishment of the symbiosis between S. meliloti and its host Medicago sativa. S. meliloti Hfq is involved in controlling the population density under a free-living state and affects the growth parameters and nodulation. An hfq mutant poorly colonizes the infection threads that are necessary for the bacteria to invade the developing nodule. An hfq mutant is severely impaired in its ability to invade plant cells within the nodule, which leads to the formation of small, ineffective nodules unable to fix nitrogen. In culture, the hfq mutant did not accumulate transcripts of nifA, which encodes a key regulator necessary for nitrogen fixation. Hfq may be involved in regulation of several proteins relevant to hfq mutant phenotypes. The crucial role of Hfq in symbiosis suggests that small regulatory RNAs are important for its interactions with its plant host.
Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Proteína de Factor 1 del Huésped/metabolismo , Medicago sativa/microbiología , Sinorhizobium meliloti/metabolismo , Simbiosis , Proteína de Factor 1 del Huésped/genética , Nodulación de la Raíz de la Planta , Raíces de Plantas/microbiología , Polisacáridos Bacterianos/biosíntesis , Sinorhizobium meliloti/genéticaRESUMEN
The ubiquitous bacterial RNA-binding protein Hfq is involved in stress resistance and pathogenicity. In Sinorhizobium meliloti, Hfq is essential for the establishment of symbiosis with Medicago sativa and for nitrogen fixation. A proteomic analysis identifies 55 proteins with significantly affected expression in the hfq mutant; most of them are involved in cell metabolism or stress resistance. Important determinants of oxidative stress resistance, such as CysK, Gsh, Bfr, SodC, KatB, KatC, and a putative peroxiredoxine (SMc00072), are downregulated in the hfq mutant. The hfq mutant is affected for H(2)O(2), menadione, and heat stress resistance. Part of these defects could result from the reductions of rpoE1, rpoE2, rpoE3, and rpoE4 expression levels in the hfq mutant. Some proteins required for efficient symbiosis are reduced in the hfq mutant, contributing to the drastic defect in nodulation observed in this mutant.
Asunto(s)
Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Proteómica , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Medicago sativa/microbiología , Mutación , Fenotipo , SimbiosisRESUMEN
RNA-directed RNA-polymerases (RdRs) are essential in small interfering RNA (siRNA) biogenesis and appear to be functionally specialized. We examined the consequences of silencing RdR2 in Nicotiana attenuata with a field release, and transcriptional, two-dimensional proteomic and metabolite analyses. NaRdR2-silenced plants (irRdR2) had large reductions (46% of wild type) in 22-24-nt small RNAs (smRNAs), and smaller reductions (35, 23 and 26% of wild type) in the 19-21, 25-27 and 28-30-nt smRNAs, respectively. When planted into their native habitats in the Great Basin Desert, irRdR2 plants had impaired growth and reproductive output, which were associated with reduced levels of leaf phenolics (rutin and 4'-chlorogenic acid) and MYB and PAL transcripts, but were unaffected in their herbivore resistance. These phenotypes were confirmed in glasshouse experiments, but only when irRdR2 plants were grown with UV-B radiation. irRdR2 plants had wild-type levels of elicited phytohormones and resistance to Manduca sexta attack, but when exposed to UV-B, had reduced growth, fitness, levels of MYB and PAL transcripts, and phenolics. Proteins related to protection against oxidative and physiological stresses, chromatin remodeling and transcription were also downregulated. Silencing the MYB gene by virus-induced gene silencing (VIGS) in wild-type plants reduced levels of PAL transcripts and phenolics, as it did in UV-exposed irRdR2 plants. Bioinformatic analysis revealed that genes involved in phenylpropanoid biosynthesis contained a large number of smRNA binding motives, suggesting that these genes are targets of smRNAs. We conclude that although NaRdR2 transcripts are upregulated in response to both UV-B and herbivore elicitation, the responses they regulate have been tailored to provide protection from UV-B radiation.
Asunto(s)
Silenciador del Gen , Nicotiana/efectos de la radiación , ARN Polimerasa Dependiente del ARN/genética , Rayos Ultravioleta , Secuencia de Bases , Sitios de Unión , Proteómica , ARN Mensajero/genética , Nicotiana/genéticaRESUMEN
Plants must respond to biotic and abiotic challenges to optimize their Darwinian fitness in nature. Many of these challenges occur repeatedly during a plant's lifetime, and their sequence and timing can profoundly influence the fitness outcome of a plant's response. The ability to perceive, store and recall previous stressful events is likely useful for efficient, rapid and cost-effective responses, but we know very little about the mechanisms involved. Using jasmonate-elicited anti-herbivore defence responses as an example, we consider how 'memories' of previous attacks could be created in (1) the biosynthetic processes involved in the generation of the oxylipin bursts elicited by herbivore attacks; (2) the perception of oxylipins and their transduction into cellular events by transcription factors and transcriptional activators; and (3) the role of small RNAs in the formation of long-term stress imprints in plants.
Asunto(s)
Adaptación Fisiológica , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Animales , Pared Celular , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Plantas/genética , Estrés Fisiológico , Factores de Transcripción/metabolismo , Activación TranscripcionalRESUMEN
microRNAs (miRNAs) are the central component of an important layer of regulation of gene expression at posttranscriptional level. In plants, miRNAs target the transcripts in a highly complementary sequence-dependent manner. Extensive research is being made to study genome-wide miRNA-mediated regulation of gene expression, which has resulted in the development of many tools for in silico prediction of miRNA targets. Although several tools have been developed for predicting miRNA targets in model plants, genome-wide analysis of miRNA targets is still a challenge for non-model species that lack dedicated tools. Here, we describe an in silico procedure for studying miRNA-mediated interactions in plants, which is based on the fact that canonical miRNA-target sites are highly complementary, the miRNAs negatively regulate the expression of their target genes, and miRNAs may form regulatory networks as one miRNA may target more than one transcript and vice versa to modulate and fine-tune expression of the genome.