Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 2): 359-367, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891849

RESUMEN

It has been shown lately that gold nanoparticles (AuNPs) and ionizing radiation (IR) have inhibitory effects on cancer cell migration while having promoting effects on normal cells' motility. Also, IR increases cancer cell adhesion with no significant effects on normal cells. In this study, synchrotron-based microbeam radiation therapy, as a novel pre-clinical radiotherapy protocol, is employed to investigate the effects of AuNPs on cell migration. Experiments were conducted utilizing synchrotron X-rays to investigate cancer and normal cell morphology and migration behaviour when they are exposed to synchrotron broad beams (SBB) and synchrotron microbeams (SMB). This in vitro study was conducted in two phases. In phase I two cancer cell lines - human prostate (DU145) and human lung (A549) - were exposed to various doses of SBB and SMB. Based on the phase I results, in phase II two normal cell lines were studied: human epidermal melanocytes (HEM) and human primary colon epithelial (CCD841), along with their respective cancerous counterparts, human primary melanoma (MM418-C1) and human colorectal adenocarcinoma (SW48). The results show that radiation-induced damage in cells' morphology becomes visible with SBB at doses greater than 50 Gy, and incorporating AuNPs increases this effect. Interestly, under the same conditions, no visible morphological changes were observed in the normal cell lines post-irradiation (HEM and CCD841). This can be attributed to the differences in cell metabolic and reactive oxygen species levels between normal and cancer cells. The outcome of this study highlights future applications of synchrotron-based radiotherapy, where it is possible to deliver extremely high doses to cancer tissues whilst preserving surrounding normal tissues from radiation-induced damage.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Masculino , Humanos , Rayos X , Oro/farmacología , Sincrotrones , Radiografía
2.
J Appl Clin Med Phys ; 15(6): 5055, 2014 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-25493531

RESUMEN

Publications have reported the benefits of using high-dose-rate brachytherapy (HDRB) for the treatment of prostate cancer, since it provides similar biochemical control as other treatments while showing lowest long-term complications to the organs at risk (OAR). With the inclusion of anatomy-based inverse planning opti- mizers, HDRB has the advantage of potentially allowing dose escalation. Among the algorithms used, the Inverse Planning Simulated Annealing (IPSA) optimizer is widely employed since it provides adequate dose coverage, minimizing dose to the OAR, but it is known to generate large dwell times in particular positions of the catheter. As an alternative, the Hybrid Inverse treatment Planning Optimization (HIPO) algorithm was recently implemented in Oncentra Brachytherapy V. 4.3. The aim of this work was to compare, with the aid of radiobiological models, plans obtained with IPSA and HIPO to assess their use in our clinical practice. Thirty patients were calculated with IPSA and HIPO to achieve our department's clinical constraints. To evaluate their performance, dosimetric data were collected: Prostate PTV D90(%), V100(%), V150(%), and V200(%), Urethra D10(%), Rectum D2cc(%), and conformity indices. Additionally tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated with the BioSuite software. The HIPO optimization was performed firstly with Prostate PTV (HIPOPTV) and then with Urethra as priority 1 (HIPOurethra). Initial optimization constraints were then modified to see the effects on dosimetric parameters, TCPs, and NTCPs. HIPO optimizations could reduce TCPs up to 10%-20% for all PTVs lower than 74 cm3. For the urethra, IPSA and HIPOurethra provided similar NTCPs for the majority of volume sizes, whereas HIPOPTV resulted in large NTCP values. These findings were in agreement with dosimetric values. By increasing the PTV maximum dose constraints for HIPOurethra plans, TCPs were found to be in agreement with IPSA without affecting the urethral NTCPs. 


Asunto(s)
Algoritmos , Braquiterapia/métodos , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Braquiterapia/normas , Humanos , Masculino , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/normas
3.
J Med Radiat Sci ; 71(2): 174-176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641984

RESUMEN

The use of artificial intelligence (AI) solutions is rapidly changing the way radiation therapy tasks, traditionally relying on human skills, are approached by enabling fast automation. This evolution represents a paradigm shift in all aspects of the profession, particularly for treatment planning applications, opening up opportunities but also causing concerns for the future of the multidisciplinary team. In Australia, radiation therapists (RTs), largely responsible for both treatment planning and delivery, are discussing the impact of the introduction of AI and the potential developments in the future of their role. As medical physicists, who are part of the multidisciplinary team, in this editorial we reflect on the considerations of RTs, and on the implications of this transition to AI.


Asunto(s)
Inteligencia Artificial , Planificación de la Radioterapia Asistida por Computador , Australia , Humanos , Radioterapia/métodos
4.
J Med Radiat Sci ; 71(2): 177-185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38525921

RESUMEN

INTRODUCTION: Surface-guided radiation therapy (SGRT) has emerged as a powerful tool to improve patient setup accuracy in radiation therapy (RT). Combined with the goal of increasing RT accuracy is an ongoing effort to decrease RT side effects. The application of a prophylactic skin dressing to the treatment site is a well-documented method of reducing skin-related side effects from RT. This paper aims to investigate whether the application of Mepitel, a prophylactic skin dressing, has an impact on the accuracy of surface-guided patient setups in chest wall RT. METHODS: A retrospective analysis of daily image-guided Online Corrections (OLCs) from patients undergoing chest wall irradiation with SGRT was performed. Translational (superior-inferior, lateral, and anterior-posterior) OLC magnitude and direction were compared between patients treated with Mepitel applied and those treated without. Systematic and random errors were calculated and compared between groups. RESULTS: OLCs from 275 fractions were analysed. Mean OLCs were larger for patients with Mepitel applied in the superior_inferior axis (0.34 vs. 0.22 cm, P = 0.049) and for the combined translational vector (0.54 vs. 0.43 cm, P = 0.043). Combined translational systematic error was slightly larger for patients with Mepitel applied (0.15 vs. 0.09 cm). CONCLUSION: Mepitel can impact the accuracy of SGRT patient-positioning in chest wall RT. The variation however is small and unlikely to have any clinical impact if SGRT is coupled with image guidance and appropriate PTV margins. Further investigation is required to assess the effect of Mepitel on SGRT accuracy in other treatment sites, as well as any potential dosimetric impacts.


Asunto(s)
Vendajes , Posicionamiento del Paciente , Pared Torácica , Humanos , Pared Torácica/efectos de la radiación , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Radioterapia Guiada por Imagen/métodos , Piel/efectos de la radiación
5.
Artículo en Inglés | MEDLINE | ID: mdl-38985969

RESUMEN

INTRODUCTION: Stereotactic ablative body radiotherapy (SABR) is a highly conformal technique utilising a high dose per fraction commonly employed in the re-treatment of spinal metastases. This study sought to determine the safety and efficacy of re-irradiation with SABR to previously treated spinal metastases. METHODS: This was a retrospective analysis of patients at three Australian centres who have undergone spinal SABR after previous spinal radiotherapy to the same or immediately adjacent vertebral level. Efficacy was determined in terms of rates of local control, while safety was characterised by rates of serious complications. RESULTS: Thirty-three spinal segments were evaluated from 32 patients. Median follow-up for all patients was 2.6 years, and median overall survival was 4.3 years. Eleven of 33 (33.3%) treated spinal segments had local progression, with a local control rate at 12 months of 71.4% (95% C.I. 55.2%-92.4%). Four patients (16.7%) went on to develop cauda equina or spinal cord compression. Thirteen out of 32 patients (40.6%) experienced acute toxicity, of which 12 were grade 2 or less. Five out of 30 spinal (16.7%) segments with follow-up imaging had a radiation-induced vertebral compression fracture. There was one case of radiation myelitis which occurred in a patient who had mediastinal radiotherapy with a treatment field which overlapped their prior spinal radiation. CONCLUSION: The patients in this study experienced long median survival, durable tumour control and high rates of freedom from long-term sequelae of treatment. These results support the use of SABR in patients who progress in the spine despite previous radiotherapy.

6.
Phys Imaging Radiat Oncol ; 25: 100421, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36817981

RESUMEN

Background and purpose: Significant deviations between bladder dose planned (DP) and dose accumulated (DA) have been reported in patients receiving radiotherapy for prostate cancer. This study aimed to construct multivariate analysis (MVA) models to predict the risk of late genitourinary (GU) toxicity with clinical and DP or DA as dose-volume (DV) variables. Materials and methods: Bladder DA obtained from 150 patients were compared with DP. MVA models were built from significant clinical and DV variables (p < 0.05) at univariate analysis. Previously developed dose-based-region-of-interest (DB-ROI) metrics using expanded ring structures from the prostate were included. Goodness-of-fit test and calibration plots were generated to determine model performance. Internal validation was accomplished using Bootstrapping. Results: Intermediate-high DA (V30-65 Gy and DB-ROI-20-50 mm) for bladder increased compared to DP. However, at the very high dose region, DA (D0.003 cc, V75 Gy, and DB-ROI-5-10 mm) were significantly lower. In MVA, single variable models were generated with odds ratio (OR) < 1. DB-ROI-50 mm was predictive of Grade ≥ 1 GU toxicity for DA and DP (DA and DP; OR: 0.96, p: 0.04) and achieved an area under the receiver operating curve (AUC) of > 0.6. Prostate volume (OR: 0.87, p: 0.01) was significant in predicting Grade 2 GU toxicity with a high AUC of 0.81. Conclusions: Higher DA (V30-65 Gy) received by the bladder were not translated to higher late GU toxicity. DB-ROIs demonstrated higher predictive power than standard DV metrics in associating Grade ≥ 1 toxicity. Smaller prostate volumes have a minor protective effect on late Grade 2 GU toxicity.

7.
Front Oncol ; 13: 1241711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023170

RESUMEN

Background and purpose: This study aimed to investigate the feasibility of safe-dose escalation to dominant intraprostatic lesions (DILs) and assess the clinical impact using dose-volume (DV) and biological metrics in photon and proton therapy. Biological parameters defined as late grade ≥ 2 gastrointestinal (GI) and genitourinary (GU) derived from planned (D P) and accumulated dose (D A) were utilized. Materials and methods: In total, 10 patients with high-risk prostate cancer with multiparametric MRI-defined DILs were investigated. Each patient had two plans with a focal boost to the DILs using intensity-modulated proton therapy (IMPT) and volumetric-modulated arc therapy (VMAT). Plans were optimized to obtain DIL coverage while respecting the mandatory organ-at-risk constraints. For the planning evaluation, DV metrics, tumor control probability (TCP) for the DILs and whole prostate excluding the DILs (prostate-DILs), and normal tissue complication probability (NTCP) for the rectum and bladder were calculated. Wilcoxon signed-rank test was used for analyzing TCP and NTCP data. Results: IMPT achieved a higher Dmean for the DILs compared to VMAT (IMPT: 68.1 GyRBE vs. VMAT: 66.6 Gy, p < 0.05). Intermediate-high rectal and bladder doses were lower for IMPT (p < 0.05), while the high-dose region (V60 Gy) remained comparable. IMPT-TCP for prostate-DIL were higher compared to VMAT (IMPT: 86%; α/ß = 3, 94.3%; α/ß = 1.5 vs. VMAT: 84.7%; α/ß = 3, 93.9%; α/ß = 1.5, p < 0.05). Likewise, IMPT obtained a moderately higher DIL TCP (IMPT: 97%; α/ß = 3, 99.3%; α/ß = 1.5 vs. VMAT: 95.9%; α/ß = 3, 98.9%; α/ß = 1.5, p < 0.05). Rectal D A-NTCP displayed the highest GI toxicity risk at 5.6%, and IMPT has a lower GI toxicity risk compared to VMAT-predicted Quantec-NTCP (p < 0.05). Bladder D P-NTCP projected a higher GU toxicity than D A-NTCP, with VMAT having the highest risk (p < 0.05). Conclusion: Dose escalation using IMPT is able to achieve a high TCP for the DILs, with the lowest rectal and bladder DV doses at the intermediate-high-dose range. The reduction in physical dose was translated into a lower NTCP (p < 0.05) for the bladder, although rectal toxicity remained equivalent.

8.
Radiother Oncol ; 188: 109868, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683811

RESUMEN

Voxel-based analysis (VBA) allows the full, 3-dimensional, dose distribution to be considered in radiotherapy outcome analysis. This provides new insights into anatomical variability of pathophysiology and radiosensitivity by removing the need for a priori definition of organs assumed to drive the dose response associated with patient outcomes. This approach may offer powerful biological insights demonstrating the heterogeneity of the radiobiology across tissues and potential associations of the radiotherapy dose with further factors. As this methodological approach becomes established, consideration needs to be given to translating VBA results to clinical implementation for patient benefit. Here, we present a comprehensive roadmap for VBA clinical translation. Technical validation needs to demonstrate robustness to methodology, where clinical validation must show generalisability to external datasets and link to a plausible pathophysiological hypothesis. Finally, clinical utility requires demonstration of potential benefit for patients in order for successful translation to be feasible. For each step on the roadmap, key considerations are discussed and recommendations provided for best practice.

9.
Phys Imaging Radiat Oncol ; 23: 97-102, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35879938

RESUMEN

Background and purpose: Significant dose deviations have been reported between planned (DP) and accumulated (DA) dose in prostate radiotherapy. This study aimed to develop multivariate analysis (MVA) models associating Grade 1 and 2 gastrointestinal (GI) toxicity with clinical and DP or DA dosimetric variables separately. Materials and methods: Dose volume (DV) metrics were compared between DA and DP for 150 high-risk prostate cancer patients. MV models were generated from significant clinical and dosimetric variables (p < 0.05) at univariate level. Dose-based-region of interest (DB-ROI) metrics were included. Model performance was measured, and additional subgroup analysis were performed. Results: Rectal DA demonstrated a higher intermediate-high dose (V30-65 Gy and DB-ROI at 15-50 mm) compared to DP. Conversely, at the very high dose region, rectal DA (V75 Gy and DB-ROI at 5-10 mm) were significantly lower. In MVA, rectal DB-ROI at 10 mm was predictive for Grade ≥ 1 GI toxicity for DA and DP. Age, rectal DA for D0.03 cc, and rectal DP for DB-ROI 10 mm were predictors for Grade 2 GI toxicity. Subgroup analysis revealed that patients ≥ 72 years old and a rectal DA of ≥ 78.2 Gy were highly predictive of Grade 2 GI toxicity. Conclusions: The dosimetric impact of a higher dose rectal dose in DA due to volumetric changes was minimal and was not predictive of detrimental clinical toxicity apart from rectal D0.03 cc ≥ 78.2 Gy for Grade 2 GI toxicity. The use of the DB-ROI method can provide equivalent predictive power as the DV method in toxicity prediction.

10.
Med Dosim ; 47(1): 92-97, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34740517

RESUMEN

Inter-fraction organ variations cause deviations between planned and delivered doses in patients receiving radiotherapy for prostate cancer. This study compared planned (DP) vs accumulated doses (DA) obtained from daily cone-beam computed tomography (CBCT) scans in high-risk- prostate cancer with pelvic lymph nodes irradiation. An intensity-based deformable image registration algorithm used to estimate contours for DA was validated using geometrical agreement between radiation oncologist's and deformable image registration algorithm propagated contours. Spearman rank correlations (rs) between geometric measures and changes in organ volumes were evaluated for 20 cases. Dose-volume (DV) differences between DA and DP were compared (Wilcoxon rank test, p < 0.05). A novel region-of-interest (ROI) method was developed and mean doses were analyzed. Geometrical measures for the prostate and organ-at-risk contours were within clinically acceptable criteria. Inter-group mean (± SD) CBCT volumes for the rectum were larger compared to planning CT (pCT) (51.1 ± 11.3 cm3vs 46.6 ± 16.1 cm3), and were moderately correlated with variations in pCT volumes, rs = 0.663, p < 0.01. Mean rectum DV for DA was higher at V30-40 Gy and lower at V70-75 Gy, p < 0.05. Mean bladder CBCT volumes were smaller compared to pCT (198.8 ± 55 cm3vs 211.5 ± 89.1 cm3), and was moderately correlated with pCT volumes, rs = 0.789, p < 0.01. Bladder DA was higher at V30-65 Gy and lower at V70-75 Gy (p < 0.05). For the ROI method, rectum and bladder DA were lower at 5 to 10 mm (p < 0.01) as compared to DP, whilst bladder DA was higher than DP at 20 to 50 mm (p < 0.01). Generated DA demonstrated significant differences in organ-at-risk doses as compared to DP. A well-constructed workflow incorporating a ROI DV-extraction method has been validated in terms of efficiency and accuracy designed for seamless integration in the clinic to guide future plan adaptation.


Asunto(s)
Neoplasias de la Próstata , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada de Haz Cónico , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Recto/diagnóstico por imagen , Flujo de Trabajo
11.
BMJ Open ; 12(1): e057135, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058267

RESUMEN

INTRODUCTION: In radiotherapy, tumour tracking leads the radiation beam to accurately target the tumour while it moves in a complex and unpredictable way due to respiration. Several tumour tracking techniques require the implantation of fiducial markers around the tumour, a procedure that involves unnecessary risks and costs. Markerless tumour tracking (MTT) negates the need for implanted markers, potentially enabling accurate and optimal radiotherapy in a non-invasive way. METHODS AND ANALYSIS: We will perform a phase I interventional trial called MArkerless image Guidance using Intrafraction Kilovoltage x-ray imaging (MAGIK) to investigate the technical feasibility of the MTT technology developed at the University of Sydney (sponsor). 30 participants will undergo the current standard of care lung stereotactic ablative radiation therapy, with the exception that kilovoltage X-ray images will be acquired continuously during treatment delivery to enable MTT. If MTT indicates that the mean lung tumour position has shifted >3 mm, a warning message will be displayed to indicate the need for a treatment intervention. The radiation therapist will then pause the treatment, shift the treatment couch to account for the shift in tumour position and resume the treatment. Participants will be implanted with fiducial markers, which act as the ground truth for evaluating the accuracy of MTT. MTT is considered feasible if the tracking accuracy is <3 mm in each dimension for >80% of the treatment time. ETHICS AND DISSEMINATION: The MAGIK trial has received ethical approval from The Alfred Human Research Ethics Committee and has been registered with ClinicalTrials.gov with the Identifier: NCT04086082. Estimated time of first recruitment is early 2022. The study recruitment and data analysis phases will be performed concurrently. Treatment for all 30 participants is expected to be completed within 2 years and participant follow-up within a total duration of 7 years. Findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT04086082; Pre-result.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Marcadores Fiduciales , Humanos , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Radiocirugia/métodos , Rayos X
12.
Front Oncol ; 12: 1084311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591496

RESUMEN

Background and purpose: Normal tissue complication probability (NTCP) parameters derived from traditional 3D plans may not be ideal in defining toxicity outcomes for modern radiotherapy techniques. This study aimed to derive parameters of the Lyman-Kutcher-Burman (LKB) NTCP model using prospectively scored clinical data for late gastrointestinal (GI) and genitourinary (GU) toxicities for high-risk prostate cancer patients treated using volumetric-modulated-arc-therapy (VMAT). Dose-volume-histograms (DVH) extracted from planned (DP) and accumulated dose (DA) were used. Material and methods: DP and DA obtained from the DVH of 150 prostate cancer patients with pelvic-lymph-nodes irradiation treated using VMAT were used to generate LKB-NTCP parameters using maximum likelihood estimations. Defined GI and GU toxicities were recorded up to 3-years post RT follow-up. Model performance was measured using Hosmer-Lemeshow goodness of fit test and the mean area under the receiver operating characteristics curve (AUC). Bootstrapping method was used for internal validation. Results: For mild-severe (Grade ≥1) GI toxicity, the model generated similar parameters based on DA and DP DVH data (DA-D50:71.6 Gy vs DP-D50:73.4; DA-m:0.17 vs DP-m:0.19 and DA/P-n 0.04). The 95% CI for DA-D50 was narrower and achieved an AUC of >0.6. For moderate-severe (Grade ≥2) GI toxicity, DA-D50 parameter was higher and had a narrower 95% CI (DA-D50:77.9 Gy, 95% CI:76.4-79.6 Gy vs DP-D50:74.6, 95% CI:69.1-85.4 Gy) with good model performance (AUC>0.7). For Grade ≥1 late GU toxicity, D50 and n parameters for DA and DP were similar (DA-D50: 58.8 Gy vs DP-D50: 59.5 Gy; DA-n: 0.21 vs DP-n: 0.19) with a low AUC of<0.6. For Grade ≥2 late GU toxicity, similar NTCP parameters were attained from DA and DP DVH data (DA-D50:81.7 Gy vs DP-D50:81.9 Gy; DA-n:0.12 vs DP-n:0.14) with an acceptable AUCs of >0.6. Conclusions: The achieved NTCP parameters using modern RT techniques and accounting for organ motion differs from QUANTEC reported parameters. DA-D50 of 77.9 Gy for GI and DA/DP-D50 of 81.7-81.9 Gy for GU demonstrated good predictability in determining the risk of Grade ≥2 toxicities especially for GI derived D50 and are recommended to incorporate as part of the DV planning constraints to guide dose escalation strategies while minimising the risk of toxicity.

13.
J Med Radiat Sci ; 68(2): 203-210, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33058720

RESUMEN

An automated dose accumulation and contour propagation workflow using daily cone beam computed tomography (CBCTs) images for prostate cases that require pelvic lymph nodes irradiation (PLNs) was developed. This workflow was constructed using MIM® software with the intention to provide accurate dose transformations for plans with two different isocentres, whereby two sequential treatment phases were prescribed. The pre-processing steps for data extractions from treatment plans, CBCTs, determination of couch shift information and management of missing CBCTs are described. To ensure that the imported translational couch shifts were in the correct orientation and readable in MIM, phantom commissioning was performed. For dose transformation, rigid registration with corrected setup shifts and scaled fractional dose was performed for pCT to daily CBCTs, which were then deformed onto CBCT1 . Fractional dose summation resulted in the final accumulated dose for the patient allowing differences in dosimetry between the planned and accumulated dose to be analysed. Contour propagations of the prostate, bladder and rectum were performed within the same workflow. Transformed contours were then deformed onto daily CBCTs to generate trending reports for analysis, including Dice Similarity Coefficient (DSC) and Mean Distance to Agreement (MDA). Results obtained from phantom commissioning (DSC = 0.96, MDA = 0.89 mm) and geometrical analysis of the propagated contours for twenty patients; prostate (DSC: 0.9 ± 0.0, MDA: 1.0 ± 0.3 mm), rectum (DSC: 0.8 ± 0.1, mm, MDA: 1.7 ± 0.6 mm) and bladder (DSC: 0.8 ± 0.1, MDA: 2.8 ± 1.0 mm) were within clinically accepted tolerances for both DSC (>0.8) and MDA (< 0.3 mm). The developed workflow is being performed on a larger patient cohort for predictive model building, with the goal of correlating observed toxicity with the actual accumulated dose received by the patient.


Asunto(s)
Neoplasias de la Próstata , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Flujo de Trabajo
14.
Radiat Oncol ; 16(1): 218, 2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34775990

RESUMEN

BACKGROUND: To determine the optimal volume of barium for oesophageal localisation on cone-beam CT (CBCT) for locally-advanced non-small cell lung cancers (NSCLC) and quantify the interfraction oesophageal movement relative to tumour. METHODS: Twenty NSCLC patients with mediastinal and/or hilar disease receiving radical radiotherapy were recruited. The first five patients received 25 ml of barium prior to their planning CT and alternate CBCTs during treatment. Subsequent five patient cohorts, received 15 ml, 10 ml and 5 ml. Six observers contoured the oesophagus on each of the 107 datasets and consensus contours were created. Overall 642 observer contours were generated and interobserver contouring reproducibility was assessed. The kappa statistic, dice coefficient and Hausdorff Distance (HD) were used to compare barium-enhanced CBCTs and non-enhanced CBCTs. Oesophageal displacement was assessed using the HD between consensus contours of barium-enhanced CBCTs and planning CTs. RESULTS: Interobserver contouring reproducibility was significantly improved in barium-enhanced CBCTs compared to non-contrast CBCTs with minimal difference between barium dose levels. Only 10 mL produced a significantly higher kappa (0.814, p = 0.008) and dice (0.895, p = 0.001). The poorer the reproducibility without barium, the greater the improvement barium provided. The median interfraction HD between consensus contours was 4 mm, with 95% of the oesophageal displacement within 15 mm. CONCLUSIONS: 10 mL of barium significantly improves oesophageal localisation on CBCT with minimal image artifact. The oesophagus moves substantially and unpredictably over a course of treatment, requiring close daily monitoring in the context of hypofractionation.


Asunto(s)
Bario/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Tomografía Computarizada de Haz Cónico/métodos , Esófago/efectos de la radiación , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Pronóstico , Estudios Prospectivos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
15.
Front Oncol ; 10: 910, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596153

RESUMEN

Purpose: For prostate cancer treatment, comparable or superior biochemical control was reported when using External-Beam-Radiotherapy (EBRT) with High-Dose-Rate-Brachytherapy (HDRB)-boost, compared to dose-escalation with EBRT alone. The conformal doses produced by HDRB could allow further beneficial prostate dose-escalation, but increase in dose is limited by normal tissue toxicity. Previous works showed correlation between urethral dose and incidence of urinary toxicity, but there is a lack of established guidelines on the dose constraints to this organ. This work aimed at fitting a Normal-Tissue-Complication-Probability model to urethral stricture data collected at one institution and validating it with an external cohort, looking at neo-adjuvant androgen deprivation as dose-modifying factor. Materials and Methods: Clinical and dosimetric data of 258 patients, with a toxicity rate of 12.8%, treated at a single institution with a variety of prescription doses, were collected to fit the Lyman-Kutcher-Burman (LKB) model using the maximum likelihood method. Due to the different fractionations, doses were converted into 2 Gy-equivalent doses (α/ß = 5 Gy), and urethral stricture was used as an end-point. For validation, an external cohort of 187 patients treated as part of the TROG (Trans Tasman Radiation Oncology Group) 03.04 RADAR trial with a toxicity rate of 8.7%, was used. The goodness of fit was assessed using calibration plots. The effect of neo-adjuvant androgen deprivation (AD) was analyzed separating patients who had received it prior to treatment from those who did not receive it. Results: The obtained LKB parameters were TD50 = 116.7 Gy and m = 0.23; n was fixed to 0.3, based on numerical optimization of the likelihood. The calibration plot showed a good agreement between the observed toxicity and the probability predicted by the model, confirmed by bootstrapping. For the external validation, the calibration plot showed that the observed toxicity obtained with the RADAR patients was well-represented by the fitted LKB model parameters. When patients were stratified by the use of AD TD50 decreased when AD was not present. Conclusions: Lyman-Kutcher-Burman model parameters were fitted to the risk of urethral stricture and externally validated with an independent cohort, to provide guidance on urethral tolerance doses for patients treated with a HDRB boost. For patients that did not receive AD, model fitting provided a lower TD50 suggesting a protective effect on urethra toxicity.

16.
Phys Eng Sci Med ; 43(3): 825-835, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32613526

RESUMEN

Total body irradiation (TBI) is an important treatment modality for the preparation of patients for bone marrow transplants. It is technically challenging and the actual delivery may vary from clinic to clinic. Knowledge of the pattern of practice may be helpful for clinics to determine future practice. We carried out an email survey from April to September 2019 sending 48 TBI related questions to all radiotherapy clinics in Australia and New Zealand via the Australasian College of Physical Scientists in Medicine email distribution list. Centres not performing TBI were not expected to complete the survey and centres that had participated in a previous survey, or that were known to perform the treatment, were followed up if no response was received. Of a total of approximately 70 centres, 14 clinics responded to the survey. The vast majority of clinics use conventional lateral and/or anterior-posterior beams at extended SSD for TBI treatment delivery. However, treatment planning, ancillary equipment (used for immobilisation/modulation), beam energy and prescribed lung doses vary considerably-with some clinics delivering the prescription dose to the lungs and some aiming to deliver a lung dose which is lower than the prescription dose. Only one clinic reported using an advanced delivery technique with modulated arcs at extended SSD. Centres either said they had no access to outcome data or did not answer this question. Compared with an earlier survey from 2005, 3 clinics have lowered their linac dose rate and 7 are the same or similar. The TBI practice in Australia and New Zealand remains varied, with considerable differences in treatment planning, beam energy, accepted lung doses and delivered dose rates.


Asunto(s)
Pautas de la Práctica en Medicina/estadística & datos numéricos , Encuestas y Cuestionarios , Irradiación Corporal Total/estadística & datos numéricos , Australia , Relación Dosis-Respuesta en la Radiación , Humanos , Nueva Zelanda , Dosificación Radioterapéutica
17.
Artículo en Inglés | MEDLINE | ID: mdl-32095550

RESUMEN

INTRODUCTION: SABR may facilitate treatment in a greater proportion of locally-advanced NSCLC patients, just as it has for early-stage disease. The oesophagus is one of the key dose-limiting organs and visualization during IGRT would better ensure toxicity is avoided. As the oesophagus is poorly seen on CBCT, we assessed the extent to which this is improved using two oral contrast agents. MATERIALS & METHODS: Six patients receiving radiotherapy for Stage I-III NSCLC were assigned to receive 50 mL Gastrografin or 50 mL barium sulphate prior to simulation and pre-treatment CBCTs. Three additional patients who did not receive contrast were included as a control group. Oesophageal visibility was determined by assessing concordance between six experienced observers in contouring the organ. 36 datasets and 216 contours were analysed. A STAPLE contour was created and compared to each individual contour. Descriptive statistics were used and a Kappa statistic, Dice Coefficient and Hausdorff distance were calculated and compared using a t-test. Contrast-induced artefact was assessed by observer scoring. RESULTS: Both contrast agents significantly improved the consistency of oesophagus localisation on CBCT across all comparison metrics compared to CBCTs without contrast. Barium performed significantly better than Gastrografin with improved kappa statistics (p = 0.007), dice coefficients (p < 0.001) and Hausdorff distances (p = 0.002), although at a cost of increased image artefact. DISCUSSION: Barium produced lower delineation uncertainties but more image artefact, compared to Gastrografin and no contrast. It is feasible to use oral contrast as a tool in IGRT to help guide clinicians and therapists with online matching and monitoring of the oesophageal position.

18.
Phys Imaging Radiat Oncol ; 11: 34-40, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33458275

RESUMEN

BACKGROUND AND PURPOSE: Inter-institutional studies highlighted correlation between consistent radiotherapy quality and improved overall patient survival. In treatment planning automation has the potential to address differences due to user-experience and training, promoting standardisation. The aim of this study was to evaluate implementation and clinical effect of a multicentre collaboratively-developed automated planning model for Intensity-Modulated Radiation Therapy/Volumetric-Modulated Arc Therapy of prostate. The model was built using a variety of public institutions' clinical plans, incorporating different contouring and dose protocols, aiming at minimising their variation. METHODS AND MATERIALS: A model using 110 clinically approved and treated prostate plans provided by different radiotherapy centres was built with RapidPlan (RP), for use on intact and post-prostatectomy prostate cases. The model was validated, distributed and introduced into clinical practice in all institutions. To investigate its impact a total of 126 patients, originally manually inverse planned (OP), were replanned using RP without additional planner manual intervention. Target and organ-at-risk (OAR) metrics were statistically compared between original and automated plans. RESULTS: For all centres combined and individually, RP provided plans comparable or superior to OP for all dose metrics. Statistically significant reductions with RP were found in bladder (V40Gy) and rectal (V50Gy) low doses (within 2.3% and 3.4% for combined and 4% and 10% individually). No clinically significant changes were seen for the PTV, independently of seminal vesicle inclusion. CONCLUSION: This project showed it is feasible to develop, share and implement RP models created with plans from different institutions treated with a variety of techniques and dose protocols, with the potential of improving treatment planning results and/or efficiency despite the original variability.

19.
Phys Med Biol ; 53(21): 5917-26, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18836218

RESUMEN

The IBA-Scanditronix NACP-02, IBA-Wellhöfer PPC-40 and PPC-05 plane-parallel ionization chambers have been simulated with the Monte Carlo code PENELOPE to obtain their chamber- and quality-dependent factors f(c,Qo) for a (60)Co gamma beam. These are applicable to the determination of k(Q) beam-quality factors for the dosimetry of electron, protons and heavier charged particles beams based on standards of absorbed dose to water. The factor f(c,Q) is equivalent to the product s(w,air)p, but it is not subject to the assumed independence of perturbation factors and stopping power (Sempau et al 2004 Phys. Med. Biol. 49 4427-44). The calculations have been carried out using three different (60)Co source models: a monoenergetic point source, a point source with a realistic (60)Co spectrum and the simulated phase space from a radiotherapy (60)Co unit. Both the detailed geometries of the ionization chambers and of the (60)Co unit have been obtained from the manufacturers. In the case of the NACP-02 chamber, values of f(c,Qo) have been compared with those in the IAEA TRS-398 Code of Practice and from other authors, results being in excellent agreement. The PPC-05 and PPC-40 chambers are of relatively new design, and their values have not been calculated before. Within the estimated uncertainty, computed at the 2sigma level (95% confidence limit), the results for each of the three chambers appear to be independent of the degree of sophistication of the (60)Co source model used. For the NACP-02 chamber this assumption is justified by the excellent agreement between the various models, which occurs at the level of one standard uncertainty. This suggests the possibility of adopting the mean value of the three source models, weighted with the inverse of their corresponding uncertainties, as a better estimate of f(c,Qo). A consequence of the above conclusions is that the estimated uncertainty of k(Q) beam-quality factors of all charged particles referred to (60)Co can potentially be decreased considerably using our approach. For example, the estimated relative standard uncertainty of the denominator of k(Q), given in TRS-398 as 1.6% for plane-parallel ionization chambers, can be reduced to 0.06% for a NACP chamber using the mean value of f(c,Qo) given in this work. Similar reductions could be obtained for the combined standard uncertainty of the k(Q) beam-quality factors of all charged particles, notably electrons.


Asunto(s)
Electrones , Método de Montecarlo , Protones , Radiometría/métodos , Radioisótopos de Cobalto
20.
Artículo en Inglés | MEDLINE | ID: mdl-29777562

RESUMEN

INTRODUCTION: This study was performed to assess the relationship between tumour response and radiation dose in equivalent 2 Gy per fraction (EQD2). METHOD: A retrospective cohort analysis of 21 patients with a diagnosis of intracranial haemangiopericytoma between 2000 and 2013 was included in this study. A total of 39 lesions were analysed. The equivalent dose in 2 Gy per fraction was calculated by assigning an alpha-beta ratio of 12 Gy. A paired t-test compared dose (EQD2) and tumour response, and as the outcome was binary, a logistic regression analysis was performed. RESULTS: In total, there were 14 cases of progression and 25 cases of non-progression. It was estimated that for a one unit increase in EQD2, the odds of non-progression were increased by a factor of 1.13 (P = 0.026). After adjusting for PTV volume, the estimated effect of EQD2 (min) on tumour response was stronger, with an estimated odds ratio of 1.36 for an increase of one unit and an odds ratio of 21.6 for an increase of 10 units (P = 0.015). The dose range varied with varying PTV volumes. Based on the logistic model, the probability of having non-progression is larger than 50% for EQ2Dmin doses larger than 30-40 Gy, in particular for volumes larger than 3.67 cm3 . CONCLUSION: This study demonstrates that there is a relationship between dose (EQD2) and outcome. With increasing dose, the likelihood of regression is higher. When adjusted for PTV volume, the response appeared stronger. The dose varied significantly with changes in the size of the PTV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA