Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Blood ; 142(4): 382-396, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267508

RESUMEN

Sickle cell disease (SCD) is a chronic hemolytic and systemic hypoxia condition with constant oxidative stress and significant metabolic alterations. However, little is known about the correlation between metabolic alterations and the pathophysiological symptoms. Here, we report that Nrf2, a master regulator of cellular antioxidant responses, regulates the production of the metabolite l-2-hydroxyglutarate (L2HG) to mediate epigenetic histone hypermethylation for gene expression involved in metabolic, oxidative, and ferroptotic stress responses in SCD. Mechanistically, Nrf2 was found to regulate the expression of L2HG dehydrogenase (L2hgdh) to mediate L2HG production under hypoxia. Gene expression profile analysis indicated that reactive oxygen species (ROS) and ferroptosis responses were the most significantly affected signaling pathways after Nrf2 ablation in SCD. Nrf2 silencing and L2HG supplementation sensitize human sickle erythroid cells to ROS and ferroptosis stress. The absence of Nrf2 and accumulation of L2HG significantly affect histone methylation for chromatin structure modification and reduce the assembly of transcription complexes on downstream target genes to regulate ROS and ferroptosis responses. Furthermore, pharmacological activation of Nrf2 was found to have protective effects against ROS and ferroptosis stress in SCD mice. Our data suggest a novel mechanism by which Nrf2 regulates L2HG levels to mediate SCD severity through ROS and ferroptosis stress responses, suggesting that targeting Nrf2 is a viable therapeutic strategy for ameliorating SCD symptoms.


Asunto(s)
Anemia de Células Falciformes , Cromatina , Epigénesis Genética , Ferroptosis , Glutaratos , Factor 2 Relacionado con NF-E2 , Ferroptosis/genética , Glutaratos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Cromatina/metabolismo , Metilación , Oxidorreductasas de Alcohol/metabolismo , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética , Perfilación de la Expresión Génica
2.
Hepatology ; 59(4): 1448-58, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24122861

RESUMEN

UNLABELLED: Immunization with effective cancer vaccines can offer a much needed adjuvant therapy to fill the treatment gap after liver resection to prevent relapse of hepatocellular carcinoma (HCC). However, current HCC cancer vaccines are mostly based on native shared-self/tumor antigens that are only able to induce weak immune responses. In this study we investigated whether the HCC-associated self/tumor antigen of alpha-fetoprotein (AFP) could be engineered to create an effective vaccine to break immune tolerance and potently activate CD8 T cells to prevent clinically relevant carcinogen-induced autochthonous HCC in mice. We found that the approach of computer-guided methodical epitope-optimization created a highly immunogenic AFP and that immunization with lentivector expressing the epitope-optimized AFP, but not wild-type AFP, potently activated CD8 T cells. Critically, the activated CD8 T cells not only cross-recognized short synthetic wild-type AFP peptides, but also recognized and killed tumor cells expressing wild-type AFP protein. Immunization with lentivector expressing optimized AFP, but not native AFP, completely protected mice from tumor challenge and reduced the incidence of carcinogen-induced autochthonous HCC. In addition, prime-boost immunization with the optimized AFP significantly increased the frequency of AFP-specific memory CD8 T cells in the liver that were highly effective against emerging HCC tumor cells, further enhancing the tumor prevention of carcinogen-induced autochthonous HCC. CONCLUSIONS: Epitope-optimization is required to break immune tolerance and potently activate AFP-specific CD8 T cells, generating effective antitumor effect to prevent clinically relevant carcinogen-induced autochthonous HCC in mice. Our study provides a practical roadmap to develop effective human HCC vaccines that may result in an improved outcome compared to the current HCC vaccines based on wild-type AFP.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Carcinoma Hepatocelular/prevención & control , Epítopos , Neoplasias Hepáticas/prevención & control , alfa-Fetoproteínas/genética , Animales , Linfocitos T CD8-positivos/patología , Carcinógenos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/inmunología , Modelos Animales de Enfermedad , Tolerancia Inmunológica/fisiología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/inmunología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Resultado del Tratamiento
3.
J Neurochem ; 130(5): 626-41, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24903326

RESUMEN

Traumatic brain injury (TBI) induces severe harm and disability in many accident victims and combat-related activities. The heat-shock proteins Hsp70/Hsp110 protect cells against death and ischemic damage. In this study, we used mice deficient in Hsp110 or Hsp70 to examine their potential requirement following TBI. Data indicate that loss of Hsp110 or Hsp70 increases brain injury and death of neurons. One of the mechanisms underlying the increased cell death observed in the absence of Hsp110 and Hsp70 following TBI is the increased expression of reactive oxygen species-induced p53 target genes Pig1, Pig8, and Pig12. To examine whether drugs that increase the levels of Hsp70/Hsp110 can protect cells against TBI, we subjected mice to TBI and administered Celastrol or BGP-15. In contrast to Hsp110- or Hsp70i-deficient mice that were not protected following TBI and Celastrol treatment, there was a significant improvement of wild-type mice following administration of these drugs during the first week following TBI. In addition, assessment of neurological injury shows significant improvement in contextual and cued fear conditioning tests and beam balance in wild-type mice that were treated with Celastrol or BGP-15 following TBI compared to TBI-treated mice. These studies indicate a significant role of Hsp70/Hsp110 in neuronal survival following TBI and the beneficial effects of Hsp70/Hsp110 inducers toward reducing the pathological consequences of TBI. Our data indicate that loss of Hsp110 or Hsp70 in mice increases brain injury following TBI. (a) One of the mechanisms underlying the increased cell death observed in the absence of these Hsps following TBI is the increased expression of ROS-induced p53 target genes known as Pigs. In addition, (b) using drugs (Celastrol or BGP-15) to increase Hsp70/Hsp110 levels protect cells against TBI, suggesting the beneficial effects of Hsp70/Hsp110 inducers to reduce the pathological consequences of TBI.


Asunto(s)
Lesiones Encefálicas/metabolismo , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa Multiplex , Análisis de Secuencia por Matrices de Oligonucleótidos , Oximas/farmacología , Triterpenos Pentacíclicos , Piperidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Triterpenos/farmacología
4.
Am J Pathol ; 183(2): 617-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23747947

RESUMEN

A number of inhibitors have been used to dissect the functional relevance of Jak2 in endothelial homeostasis, with disparate results. Given that Jak2 deficiency leads to embryonic lethality, the exact role of Jak2 in the regulation of postnatal endothelial function is yet to be fully elucidated. We generated a model in which Jak2 deficiency can be induced by tamoxifen in adult mice. Loss of Jak2 significantly impaired endothelium-dependent response capacity for vasodilators. Matrigel plug assays indicated a notable decrease in endothelial angiogenic function in Jak2-deficient mice. Studies in a hindlimb ischemic model indicated that Jak2 activity is likely to be a prerequisite for prompt perfusion recovery, based on the concordance of temporal changes in Jak2 expression during the course of ischemic injury and perfusion recovery. A remarkable delay in perfusion recovery, along with reduced capillary and arteriole formation, was observed in Jak2-deficient mice. Antibody array studies indicated that loss of Jak2 led to repressed eNOS expression. In mechanistic studies, Jak2 deficiency attenuated Raf-1/MEK1 signaling, which then reduced activity of Sp-1, an essential transcription factor responsible for eNOS expression. These data are important not only for understanding the exact role that Jak2 plays in endothelial homeostasis, but also for assessing Jak2-based therapeutic strategies in a variety of clinical settings.


Asunto(s)
Janus Quinasa 2/deficiencia , MAP Quinasa Quinasa 1/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Quinasas/fisiología , Proteínas Proto-Oncogénicas c-raf/fisiología , Animales , Aorta/efectos de los fármacos , Aorta/enzimología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Endotelio Vascular/fisiología , Inhibidores Enzimáticos/farmacología , Miembro Posterior/irrigación sanguínea , Isquemia/enzimología , Janus Quinasa 2/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Tamoxifeno/farmacología , Vasodilatadores/farmacología
5.
Waste Manag ; 186: 46-54, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852376

RESUMEN

Medical waste incineration ash (MWIA) has significant concentrations of heavy metals, dioxins, and chlorine that, if handled incorrectly, might cause permanent damage to the environment and humans. The low content of calcium (Ca), silicon (Si), and aluminum (Al) is a brand-new challenge for the melting technique of MWIA. This work added coal fly ash (CFA) to explore the effect of melting on the detoxication treatment of MWIA. It was found that the produced vitrification product has a high vitreous content (98.61%) and a low potential ecological risk, with an initial ash solidification rate of 67.38%. By quantitatively assessing the morphological distribution features of heavy metals in ashes before melting and molten products, the stabilization and solidification rules of heavy metals during the melting process were investigated. This work ascertained the feasibility of co-vitrification of MWIA and CFA. In addition, the high-temperature melting and vitrification accelerated the detoxification of MWIA and the solidification of heavy metals.

6.
J Orthop Surg (Hong Kong) ; 32(1): 10225536241244825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38607239

RESUMEN

PURPOSE: This study aims to systematically review the efficacy and safety of total ankle replacement (TAR) and ankle fusion (AF) as treatment options for end-stage ankle arthritis. METHODS: A comprehensive literature search was conducted on data from multiple databases, including PubMed, The Cochrane Library, Construction and Building Materials, Embase, Web of Science, and Scopus for RCTs and prospective cohort studies comparing TAR and AF in patients with end-stage ankle arthritis from inception up to June, 2023. Our primary outcomes of interest included patients' clinical function scores and complications. We employed Review Manager 5.4 and Stata/MP 14.0 software for the meta-analysis. RESULTS: Our analysis incorporated 13 comparative studies, including 11 prospective studies, one pilot RCT, and one RCT. The pooled results revealed no significant difference in postoperative Short Form-36 scores between the TAR and AF groups (MD = -1.19, 95% CI: -3.89 to 1.50, p = .39). However, the postoperative Foot and Ankle Ability Measure scores in the AF group were significantly higher than in the TAR group (MD = 8.30, 95% CI: 1.01-15.60, p = .03). There was no significant difference in postoperative complication rates between the TAR and AF groups (RR = 0.95, 95% CI: 0.59 to 1.54, p = .85). CONCLUSION: Currently available evidence suggests no significant disparity in postoperative outcomes between TAR and AF. In the short term, TAR demonstrates better clinical scores than AF and lower complication rates. Conversely, in the long term, AF exhibits superior clinical scores and lower complication rates, although this difference is not statistically significant.


Asunto(s)
Artritis , Artroplastia de Reemplazo de Tobillo , Humanos , Tobillo , Estudios Prospectivos , Articulación del Tobillo/cirugía , Artritis/cirugía
7.
Funct Integr Genomics ; 13(2): 229-39, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23455933

RESUMEN

Nicotianamine (NA) is an important divalent metal chelator and the main precursor of phytosiderophores. NA is synthesized from S-adenosylmethionine in a process catalyzed by nicotianamine synthase (NAS). In this study, a set of structural and phylogenetic analyses have been applied to identify the maize NAS genes based on the maize genome sequence release. Ten maize NAS genes have been mapped; seven of them have not been reported to date. Phylogenetic analysis and expression pattern from microarray data led to their classification into two different orthologous groups. C-terminal fusion of ZmNAS3 with GFP was found in the cytoplasm of Arabidopsis leaf protoplast. Expression analysis by reverse transcription polymerase chain reaction revealed ZmNAS genes are responsive to heavy metal ions (Ni, Fe, Cu, Mn, Zn, and Cd), and all 10 ZmNAS genes were only observed in the root tissue except of ZmNAS6. The promoter of ZmNAS genes was analyzed for the presence of different cis-element response to all kinds of phytohormones and environment stresses. We found that the ZmNAS gene expression of maize seedlings was regulated by jasmonic acid, abscisic acid, and salicylic acid. Microarray data demonstrated that the ZmNAS genes show differential, organ-specific expression patterns in the maize developmental steps. The integrated comparative analysis can improve our current view of ZmNAS genes and facilitate the functional characterization of individual members.


Asunto(s)
Transferasas Alquil y Aril/genética , Genes de Plantas/genética , Metales Pesados/toxicidad , Familia de Multigenes , Reguladores del Crecimiento de las Plantas/farmacología , Zea mays/enzimología , Zea mays/genética , Biocatálisis/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/enzimología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Moleculares , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Homología Estructural de Proteína , Zea mays/efectos de los fármacos
8.
Am J Hum Genet ; 86(6): 957-62, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20560209

RESUMEN

Previously, we localized the defective gene for the urofacial syndrome (UFS) to a region on chromosome 10q24 by homozygosity mapping. We now report evidence that Heparanse 2 (HPSE2) is the culprit gene for the syndrome. Mutations with a loss of function in the Heparanase 2 (HPSE2) gene were identified in all UFS patients originating from Colombia, the United States, and France. HPSE2 encodes a 592 aa protein that contains a domain showing sequence homology to the glycosyl hydrolase motif in the heparanase (HPSE) gene, but its exact biological function has not yet been characterized. Complete loss of HPSE2 function in UFS patients suggests that HPSE2 may be important for the synergic action of muscles implicated in facial expression and urine voiding.


Asunto(s)
Facies , Genes Recesivos , Glucuronidasa/genética , Enfermedades Urológicas/genética , Mapeo Cromosómico , Femenino , Humanos , Masculino , Mutación , Linaje , Síndrome
9.
Am J Pathol ; 181(3): 937-46, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22796409

RESUMEN

microRNAs (miRNAs) have regulated the expression and function of genes implicated in many pathological settings, but their impact on the pathoetiological characteristics of overactive bladder (OAB) largely remains unknown. We have generated a mouse model in which adult mice can be induced for detrusor deletion of Dicer, an enzyme essential for miRNA processing. Targeted deletion of Dicer did not lead to a significant change for detrusor functionality under physiological conditions; however, loss of Dicer exacerbated cyclophosphamide-induced OAB, manifested by the higher severity of altered detrusor contractile force and sensitivity, abnormal urodynamics, and enhanced macrophage infiltration. Mechanistic studies revealed that loss of Dicer may impair the expression of miRNAs that are capable of targeting P2x mRNAs. As a result, mice deficient in Dicer manifest enhanced P2X expression in the detrusor on cyclophosphamide treatment, predisposing to the increased risk for OAB development. More important, studies using bladder biopsy samples of patients with OAB also demonstrated similar results as those found in animals. Taken together, our results suggest that miRNAs modulate OAB susceptibility by regulating purinergic signaling, in which the pathogenic insult induces the expression of miRNAs capable of targeting P2X mRNAs to suppress OAB symptoms.


Asunto(s)
ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/metabolismo , Receptores Purinérgicos/metabolismo , Ribonucleasa III/deficiencia , Ribonucleasa III/metabolismo , Transducción de Señal , Vejiga Urinaria Hiperactiva/metabolismo , Animales , Secuencia de Bases , Western Blotting , Biología Computacional , Ciclofosfamida , Eliminación de Gen , Regulación de la Expresión Génica , Marcación de Gen , Humanos , Inmunohistoquímica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Contracción Muscular/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Vejiga Urinaria/patología , Vejiga Urinaria/fisiopatología , Vejiga Urinaria Hiperactiva/inducido químicamente , Vejiga Urinaria Hiperactiva/patología , Vejiga Urinaria Hiperactiva/fisiopatología
10.
Mol Cancer Res ; 21(10): 1079-1092, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37364049

RESUMEN

Correlations between the oxidative stress response and metabolic reprogramming have been observed during malignant tumor formation; however, the detailed mechanism remains elusive. The transcription factor Nrf2, a master regulator of the oxidative stress response, mediates metabolic reprogramming in multiple cancers. In a mouse model of hepatocellular carcinoma (HCC), through metabolic profiling, genome-wide gene expression, and chromatin structure analyses, we present new evidence showing that in addition to altering antioxidative stress response signaling, Nrf2 ablation impairs multiple metabolic pathways to reduce the generation of acetyl-CoA and suppress histone acetylation in tumors, but not in tumor-adjacent normal tissue. Nrf2 ablation and dysregulated histone acetylation impair transcription complex assembly on downstream target antioxidant and metabolic regulatory genes for expression regulation. Mechanistic studies indicate that the regulatory function of Nrf2 is low glucose dependent, the effect of which is demolished under energy refeeding. Together, our results implicate an unexpected effect of Nrf2 on acetyl-CoA generation, in addition to its classic antioxidative stress response regulatory activity, integrates metabolic and epigenetic programs to drive HCC progression. IMPLICATIONS: This study highlights that Nrf2 integrates metabolic and epigenetic regulatory networks to dictate tumor progression and that Nrf2 targeting is therapeutically exploitable in HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Carcinoma Hepatocelular/patología , Epigénesis Genética , Histonas/metabolismo , Neoplasias Hepáticas/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
11.
Funct Integr Genomics ; 12(4): 683-91, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22983498

RESUMEN

Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement.


Asunto(s)
Aldehído Deshidrogenasa/genética , Familia de Multigenes , Zea mays/genética , Aldehído Deshidrogenasa/química , Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica de las Plantas , Filogenia , Estructura Terciaria de Proteína , ARN Mensajero/biosíntesis , Análisis de Secuencia de ADN , Estrés Fisiológico , Zea mays/enzimología
12.
Artículo en Inglés | MEDLINE | ID: mdl-34476412

RESUMEN

Tumor angiogenesis is a hallmark of cancer. Therapeutic drug inhibitors targeting angiogenesis are clinically effective. We have previously identified GT198 (gene symbol PSMC3IP, also known as Hop2) as an oncoprotein that induces tumor angiogenesis in human cancers, including oral cancer. In this study, we show that the GT198 protein is a direct drug target of more than a dozen oncology drugs and several clinically successful anticancer herbs. GT198 is a DNA repair protein that binds to DNA. Using an in vitro DNA-binding assay, we tested the approved oncology drug set VII from the National Cancer Institute containing 129 oncology drugs. Identified GT198 inhibitors include but are not limited to mitoxantrone, doxorubicin, paclitaxel, etoposide, dactinomycin, and imatinib. Paclitaxel and etoposide have higher binding affinities, whereas doxorubicin has higher binding efficacy due to competitive inhibition. GT198 shares protein sequence homology with DNA topoisomerases, which are known drug targets, so that GT198 is likely a new drug target previously unrecognized. To seek more powerful GT198 inhibitors, we further tested several anticancer herbal extracts. The positive anticancer herbs with high affinity and high efficacy are all clinically successful ones, including allspice from Jamaica, Gleditsia sinensis or honey locust from China, and BIRM from Ecuador. Partial purification of allspice using an organic chemical approach demonstrated great feasibility of natural product purification, when the activity is monitored by the in vitro DNA-binding assay using GT198 as a target. Together, our study reveals GT198 as a new targeting mechanism for existing oncology drugs. The study also delivers an excellent drug target suitable for compound identification and natural product purification. In particular, this study opens an opportunity to rapidly identify drugs with high efficacy and low toxicity from nature.

13.
Mol Biol Evol ; 26(12): 2849-64, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19723671

RESUMEN

There is no generally accepted picture of where, when, and how the domestic dog originated. Previous studies of mitochondrial DNA (mtDNA) have failed to establish the time and precise place of origin because of lack of phylogenetic resolution in the so far studied control region (CR), and inadequate sampling. We therefore analyzed entire mitochondrial genomes for 169 dogs to obtain maximal phylogenetic resolution and the CR for 1,543 dogs across the Old World for a comprehensive picture of geographical diversity. Hereby, a detailed picture of the origins of the dog can for the first time be suggested. We obtained evidence that the dog has a single origin in time and space and an estimation of the time of origin, number of founders, and approximate region, which also gives potential clues about the human culture involved. The analyses showed that dogs universally share a common homogenous gene pool containing 10 major haplogroups. However, the full range of genetic diversity, all 10 haplogroups, was found only in southeastern Asia south of Yangtze River, and diversity decreased following a gradient across Eurasia, through seven haplogroups in Central China and five in North China and Southwest (SW)Asia, down to only four haplogroups in Europe. The mean sequence distance to ancestral haplotypes indicates an origin 5,400-16,300 years ago (ya) from at least 51 female wolf founders. These results indicate that the domestic dog originated in southern China less than 16,300 ya, from several hundred wolves. The place and time coincide approximately with the origin of rice agriculture, suggesting that the dogs may have originated among sedentary hunter-gatherers or early farmers, and the numerous founders indicate that wolf taming was an important culture trait.


Asunto(s)
ADN Mitocondrial/genética , Perros/genética , Filogenia , Ríos , Lobos/genética , Animales , Asia Sudoriental , China , Europa (Continente) , Femenino , Pool de Genes , Genoma Mitocondrial/genética , Geografía , Haplotipos/genética , Región de Control de Posición/genética , Datos de Secuencia Molecular , Factores de Tiempo
14.
Mol Ecol ; 19(16): 3406-20, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20666999

RESUMEN

Historical drainage patterns adjacent to the Qinghai-Tibetan Plateau differed markedly from those of today. We examined the relationship between drainage history and geographic patterns of genetic variation in the Yunnan spiny frog, Nanorana yunnanensis, using approximately 981 base pairs of mitochondrial DNA partial sequences from protein-coding genes ND1 and ND2, and intervening areas including complete tRNA(Ile), tRNA(Gln) and tRNA(Met). Two null hypotheses were tested: (i) that genetic patterns do not correspond to the development of drainage systems and (ii) that populations had been stable and not experienced population expansion, bottlenecking and selection. Genealogical analyses identified three, major, well-supported maternal lineages, each of which had two sublineages. These divergent lineages were completely concordant with six geographical regions. Genetic structure and divergence were strongly congruent with historical rather than contemporary drainage patterns. Most lineages and sublineages were formed via population fragmentation during the rearrangement of paleodrainage basins in the Early Pliocene and Early Pleistocene. Sympatric lineages occurred only in localities at the boundaries of major drainages, likely reflecting secondary contact of previously allopatric populations. Extensive population expansion probably occurred early in the Middle Pleistocene accompanying dramatic climatic oscillations.


Asunto(s)
Ecosistema , Evolución Molecular , Genética de Población , Filogenia , Ranidae/genética , Animales , Teorema de Bayes , China , ADN Mitocondrial/genética , Geografía , Haplotipos , NADH Deshidrogenasa/genética , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Isoleucina/genética , ARN de Transferencia de Metionina/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
15.
Mycologia ; 102(6): 1318-38, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20943565

RESUMEN

Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species' ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panamá. ITS and 5'-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5'-tef1 screens concordantly resolved four strongly supported lineages, clades A-D: Clade A includes the ex type of C. gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study. In contrast the 5'-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics.


Asunto(s)
Cacao/microbiología , Colletotrichum/clasificación , Colletotrichum/aislamiento & purificación , Interacciones Huésped-Patógeno , Filogenia , Simbiosis , Cacao/fisiología , Colletotrichum/genética , Colletotrichum/fisiología , Datos de Secuencia Molecular , Técnicas de Tipificación Micológica , Panamá
16.
Mol Cancer Res ; 18(3): 463-476, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31744878

RESUMEN

Deregulated oncogenic signaling linked to PI3K/AKT and mTORC1 pathway activation is a hallmark of human T-cell acute leukemia (T-ALL) pathogenesis and contributes to leukemic cell resistance and adverse prognosis. Notably, although the multiagent chemotherapy of leukemia leads to a high rate of complete remission, options for salvage therapy for relapsed/refractory disease are limited due to the serious side effects of augmenting cytotoxic chemotherapy. We report that ablation of HSF1, a key transcriptional regulator of the chaperone response and cellular bioenergetics, from mouse T-ALL tumors driven by PTEN loss or human T-ALL cell lines, has significant therapeutic effects in reducing tumor burden and sensitizing malignant cell death. From a mechanistic perspective, the enhanced sensitivity of T-ALLs to HSF1 depletion resides in the reduced MAPK-ERK signaling and metabolic and ATP-producing capacity of malignant cells lacking HSF1 activity. Impaired mitochondrial ATP production and decreased intracellular amino acid content in HSF1-deficient T-ALL cells trigger an energy-saving adaptive response featured by attenuation of the mTORC1 activity, which is coregulated by ATP, and its downstream target proteins (p70S6K and 4E-BP). This leads to protein translation attenuation that diminishes oncogenic signals and malignant cell growth. Collectively, these metabolic alterations in the absence of HSF1 activity reveal cancer cell liabilities and have a profound negative impact on T-ALL progression. IMPLICATIONS: Targeting HSF1 and HSF1-dependent cancer-specific anabolic and protein homeostasis programs has a significant therapeutic potential for T-ALL and may prevent progression of relapsed/refractory disease.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Metabolismo Energético , Femenino , Humanos , Masculino , Ratones , Transducción de Señal
17.
Mol Cell Biol ; 39(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30745413

RESUMEN

Delineating the mechanisms that drive hepatic injury and hepatocellular carcinoma (HCC) progression is critical for development of novel treatments for recurrent and advanced HCC but also for the development of diagnostic and preventive strategies. Heat shock protein 70 (HSP70) acts in concert with several cochaperones and nucleotide exchange factors and plays an essential role in protein quality control that increases survival by protecting cells against environmental stressors. Specifically, the HSP70-mediated response has been implicated in the pathogenesis of cancer, but the specific mechanisms by which HSP70 may support malignant cell transformation remains to be fully elucidated. Here, we show that genetic ablation of HSP70 markedly impairs HCC initiation and progression by distinct but overlapping pathways. This includes the potentiation of the carcinogen-induced DNA damage response, at the tumor initiation stage, to increase the p53-dependent surveillance response leading to the cell cycle exit or death of genomically damaged differentiated pericentral hepatocytes, and this may also prevent their conversion into more proliferating HCC progenitor cells. Subsequently, activation of a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) negative feedback pathway diminishes oncogenic signals, thereby attenuating premalignant cell transformation and tumor progression. Modulation of HSP70 function may be a strategy for interfering with oncogenic signals driving liver cell transformation and tumor progression, thus providing an opportunity for human cancer control.


Asunto(s)
Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Dietilnitrosamina/efectos adversos , Proteínas HSP70 de Choque Térmico/genética , Neoplasias Hepáticas/patología , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Daño del ADN , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Proteína p53 Supresora de Tumor/metabolismo
18.
Biochem Biophys Res Commun ; 375(3): 454-9, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18708028

RESUMEN

Here we performed studies to demonstrate SUMO4 maturation process. Unlike other SUMO proteins, cells under physiological condition mediate a rapid degradation for SUMO4. However, when cells under stressed condition, SUMO4 can be matured by the stress-induced endogenous hydrolase and be able to covalently conjugate to its substrate proteins. Furthermore, we failed to obtain evidence supporting a role for proline-90 unique to SUMO4 in its activation and functionality. Both wild-type SUMO4 and SUMO4-P90Q can be hydrolyzed by the stressed RAW264.7 cell lysates, and no significant functional difference between SUMO4, SUMO4-P90Q, and SUMO4-GG (matured form) was observed as determined by luciferase assay. However, the C-terminal di-glycine motif, a prerequisite for sumoylation, is necessary for SUMO4 to exert its functional activity. These data not only confirmed our previous published data, but also provided additional evidence suggesting a role for SUMO4 sumoylation in the regulation of intracellular stress.


Asunto(s)
Prolina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Línea Celular , Humanos , Ratones , Especificidad por Sustrato
19.
BMC Evol Biol ; 7: 87, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17555574

RESUMEN

BACKGROUND: Species of the Drosophila obscura species group (e.g., D. pseudoobscura, D. subobscura) have served as favorable models in evolutionary studies since the 1930's. Despite numbers of studies conducted with varied types of data, the basal phylogeny in this group is still controversial, presumably owing to not only the hypothetical 'rapid radiation' history of this group, but also limited taxon sampling from the Old World (esp. the Oriental and Afrotropical regions). Here we reconstruct the phylogeny of this group by using sequence data from 6 loci of 21 species (including 16 Old World ones) covering all the 6 subgroups of this group, estimate the divergence times among lineages, and statistically test the 'rapid radiation' hypothesis. RESULTS: Phylogenetic analyses indicate that each of the subobscura, sinobscura, affinis, and pseudoobscura subgroups is monophyletic. The subobscura and microlabis subgroups form the basal clade in the obscura group. Partial species of the obscura subgroup (the D. ambigua/D. obscura/D. tristis triad plus the D. subsilvestris/D. dianensis pair) forms a monophyletic group which appears to be most closely related to the sinobscura subgroup. The remaining basal relationships in the obscura group are not resolved by the present study. Divergence times on a ML tree based on mtDNA data are estimated with a calibration of 30-35 Mya for the divergence between the obscura and melanogaster groups. The result suggests that at least half of the current major lineages of the obscura group originated by the mid-Miocene time (~15 Mya), a time of the last developing and fragmentation of the temperate forest in North Hemisphere. CONCLUSION: The obscura group began to diversify rapidly before invading into the New World. The subobscura and microlabis subgroups form the basal clade in this group. The obscura subgroup is paraphyletic. Partial members of this subgroup (D. ambigua, D. obscura, D. tristis, D. subsilvestris, and D. dianensis) form a monophyletic group which appears to be most closely related to the sinobscura subgroup.


Asunto(s)
Drosophila/genética , Genes de Insecto , Especiación Genética , Filogenia , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Mitocondrial , Drosophila/clasificación , Evolución Molecular , Variación Genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN
20.
Zoolog Sci ; 24(1): 71-80, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17409719

RESUMEN

Based on partial sequences of the 12S and 16S ribosomal RNA genes, we estimated phylogenetic relationships among brown frogs of the Rana temporaria group from China. From the phylogenetic trees obtained, we propose to include Rana zhengi in the brown frogs. Monophyly of the brown frogs was not unambiguously supported, but four well-supported clades (A, B, C, and D) always emerged, although relationships among them remained unresolved. Clade A contained brown frogs with 24 chromosomes and was split into two distinct subclades (Subclade A-1: R. chensinensis and R. huanrenensis; Subclade A-2: R. dybowskii). Polytomous relationships among populations of R. chensinensis and R. huanrenensis suggested the necessity of further taxonomic assessment. Rana kunyuensis proved to be the sister group to R. amurensis, and these two species formed Clade B. Clade C was composed of R. omeimontis and R. chaochiaoensis, and Clade D included R. sauteri, which has been placed in other ranid genera. These relationships did not change after adding published data, and monophyly of Subclade A-1, A-2, and other East Asian brown frogs with 24 chromosomes (R. pirica and R. ornativentris) was ascertained, though their relationships were unresolved. Clade C, together with R. japonica and R. longicrus, also formed a monophyletic group. Brown frogs related to Clades A and C were estimated to have dispersed from continental Asia to adjacent regions through multiple events.


Asunto(s)
Cromosomas/genética , Filogenia , Ranidae/genética , Animales , Secuencia de Bases , Teorema de Bayes , China , Cartilla de ADN , ADN Mitocondrial/genética , Modelos Genéticos , Datos de Secuencia Molecular , Ranidae/clasificación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA