Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Methods ; 16: 69, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435271

RESUMEN

BACKGROUND: Precision agriculture is an emerging research field that relies on monitoring and managing field variability in phenotypic traits. An important phenotypic trait is biomass, a comprehensive indicator that can reflect crop yields. However, non-destructive biomass estimation at fine levels is unknown and challenging due to the lack of accurate and high-throughput phenotypic data and algorithms. RESULTS: In this study, we evaluated the capability of terrestrial light detection and ranging (lidar) data in estimating field maize biomass at the plot, individual plant, leaf group, and individual organ (i.e., individual leaf or stem) levels. The terrestrial lidar data of 59 maize plots with more than 1000 maize plants were collected and used to calculate phenotypes through a deep learning-based pipeline, which were then used to predict maize biomass through simple regression (SR), stepwise multiple regression (SMR), artificial neural network (ANN), and random forest (RF). The results showed that terrestrial lidar data were useful for estimating maize biomass at all levels (at each level, R2 was greater than 0.80), and biomass estimation at leaf group level was the most precise (R2 = 0.97, RMSE = 2.22 g) among all four levels. All four regression techniques performed similarly at all levels. However, considering the transferability and interpretability of the model itself, SR is the suggested method for estimating maize biomass from terrestrial lidar-derived phenotypes. Moreover, height-related variables showed to be the most important and robust variables for predicting maize biomass from terrestrial lidar at all levels, and some two-dimensional variables (e.g., leaf area) and three-dimensional variables (e.g., volume) showed great potential as well. CONCLUSION: We believe that this study is a unique effort on evaluating the capability of terrestrial lidar on estimating maize biomass at difference levels, and can provide a useful resource for the selection of the phenotypes and models required to estimate maize biomass in precision agriculture practices.

2.
Plant Methods ; 15: 11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30740137

RESUMEN

BACKGROUND: Maize (Zea mays L.) is the third most consumed grain in the world and improving maize yield is of great importance of the world food security, especially under global climate change and more frequent severe droughts. Due to the limitation of phenotyping methods, most current studies only focused on the responses of phenotypes on certain key growth stages. Although light detection and ranging (lidar) technology showed great potential in acquiring three-dimensional (3D) vegetation information, it has been rarely used in monitoring maize phenotype dynamics at an individual plant level. RESULTS: In this study, we used a terrestrial laser scanner to collect lidar data at six growth stages for 20 maize varieties under drought stress. Three drought-related phenotypes, i.e., plant height, plant area index (PAI) and projected leaf area (PLA), were calculated from the lidar point clouds at the individual plant level. The results showed that terrestrial lidar data can be used to estimate plant height, PAI and PLA at an accuracy of 96%, 70% and 92%, respectively. All three phenotypes showed a pattern of first increasing and then decreasing during the growth period. The high drought tolerance group tended to keep lower plant height and PAI without losing PLA during the tasseling stage. Moreover, the high drought tolerance group inclined to have lower plant area density in the upper canopy than the low drought tolerance group. CONCLUSION: The results demonstrate the feasibility of using terrestrial lidar to monitor 3D maize phenotypes under drought stress in the field and may provide new insights on identifying the key phenotypes and growth stages influenced by drought stress.

3.
Front Plant Sci ; 9: 866, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988466

RESUMEN

The rapid development of light detection and ranging (Lidar) provides a promising way to obtain three-dimensional (3D) phenotype traits with its high ability of recording accurate 3D laser points. Recently, Lidar has been widely used to obtain phenotype data in the greenhouse and field with along other sensors. Individual maize segmentation is the prerequisite for high throughput phenotype data extraction at individual crop or leaf level, which is still a huge challenge. Deep learning, a state-of-the-art machine learning method, has shown high performance in object detection, classification, and segmentation. In this study, we proposed a method to combine deep leaning and regional growth algorithms to segment individual maize from terrestrial Lidar data. The scanned 3D points of the training site were sliced row and row with a fixed 3D window. Points within the window were compressed into deep images, which were used to train the Faster R-CNN (region-based convolutional neural network) model to learn the ability of detecting maize stem. Three sites of different planting densities were used to test the method. Each site was also sliced into many 3D windows, and the testing deep images were generated. The detected stem in the testing images can be mapped into 3D points, which were used as seed points for the regional growth algorithm to grow individual maize from bottom to up. The results showed that the method combing deep leaning and regional growth algorithms was promising in individual maize segmentation, and the values of r, p, and F of the three testing sites with different planting density were all over 0.9. Moreover, the height of the truly segmented maize was highly correlated to the manually measured height (R2> 0.9). This work shows the possibility of using deep leaning to solve the individual maize segmentation problem from Lidar data.

4.
Sci China Life Sci ; 61(3): 328-339, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28616808

RESUMEN

With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/fisiología , Imagenología Tridimensional , Fenotipo , Tecnología de Sensores Remotos , Cruzamiento , China , Productos Agrícolas/anatomía & histología , Productos Agrícolas/genética , Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA