Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(23): 7197-7211, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741939

RESUMEN

Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.


Asunto(s)
Toxinas Botulínicas Tipo A , Toxina Tetánica , Animales , Toxina Tetánica/genética , Toxina Tetánica/metabolismo , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Unión Proteica , Anticuerpos Neutralizantes , Vacunas de Subunidad/genética
2.
Acta Pharmacol Sin ; 43(4): 840-849, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34267346

RESUMEN

Luteolin is a flavonoid in a variety of fruits, vegetables, and herbs, which has shown anti-inflammatory, antioxidant, and anti-cancer neuroprotective activities. In this study, we investigated the potential beneficial effects of luteolin on memory deficits and neuroinflammation in a triple-transgenic mouse model of Alzheimer's disease (AD) (3 × Tg-AD). The mice were treated with luteolin (20, 40 mg · kg-1 · d-1, ip) for 3 weeks. We showed that luteolin treatment dose-dependently improved spatial learning, ameliorated memory deficits in 3 × Tg-AD mice, accompanied by inhibiting astrocyte overactivation (GFAP) and neuroinflammation (TNF-α, IL-1ß, IL-6, NO, COX-2, and iNOS protein), and decreasing the expression of endoplasmic reticulum (ER) stress markers GRP78 and IRE1α in brain tissues. In rat C6 glioma cells, treatment with luteolin (1, 10 µM) dose-dependently inhibited LPS-induced cell proliferation, excessive release of inflammatory cytokines, and increase of ER stress marker GRP78. In conclusion, luteolin is an effective agent in the treatment of learning and memory deficits in 3 × Tg-AD mice, which may be attributable to the inhibition of ER stress in astrocytes and subsequent neuroinflammation. These results provide the experimental basis for further research and development of luteolin as a therapeutic agent for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Endorribonucleasas/farmacología , Endorribonucleasas/uso terapéutico , Luteolina/farmacología , Luteolina/uso terapéutico , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Proteínas Serina-Treonina Quinasas , Ratas
3.
Clin Immunol ; 193: 12-23, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29803820

RESUMEN

Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder impairing memory and cognition. In this study, we describe the immunogenicity and protective efficacy of the novel recombinant 6Aß15-TF chimeric antigen as a subunit protein vaccine for AD. Recombinant 6Aß15-TF chimeric vaccine induced strong Aß-specific humoral immune responses without Aß-specific T cell immunity in C57/BL6 and 3 × Tg-AD mice at different ages. As an early immunotherapy model for AD, this vaccine induced high titers of long-lasting anti-Aß42 antibodies in aged 3 × Tg-AD mice, which led to improve behavioral performance and markedly reduced the levels of insoluble and soluble Aß and Aß oligomers. In agreement with these findings, immunotherapy with 6Aß15-TF prevented the Aß-induced decrease of presynaptic and postsynaptic proteins in aged 3 × Tg-AD mice. Our results suggest that this novel and highly immunogenic recombinant 6Aß15-TF chimeric vaccine provides neuroprotection in AD mice and can be considered an effective AD candidate vaccine.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Vacunas contra el Alzheimer/inmunología , Péptidos beta-Amiloides/inmunología , Inmunoterapia/métodos , Fragmentos de Péptidos/inmunología , Proteínas Recombinantes de Fusión/inmunología , Envejecimiento , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal , Cognición , Modelos Animales de Enfermedad , Sinapsis Eléctricas , Femenino , Humanos , Inmunidad Humoral , Inmunización , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroprotección , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas
4.
Zhongguo Zhong Yao Za Zhi ; 41(24): 4605-4609, 2016 Dec.
Artículo en Zh | MEDLINE | ID: mdl-28936844

RESUMEN

To investigate the chemical compounds from the fruit of Cornus officinalis, six compounds were isolated and determined by extensive spectroscopic analysis as 6'-O-acetyl-7α-O-ethyl morroniside (1), (-)-isolariciresinol 3α-O-ß-D-glucopyranoside(2), apigenin (3), cirsiumaldehyde(4), p-coumaric acid (5), caffeic acid (6). Compound 1 was a new iridoid glucoside,and compounds 2-4 were obtained from the Cornus genus for the first time. Compounds 2-6 were evaluated for the viability of PC12 cells when exposed in conditions of oxygen and glucose deprivation. The MTT results showed that compound 4 increased cell viability moderately in OGD/R treated PC12 cells at the concentration of 1.0 µmol•L⁻¹.


Asunto(s)
Cornus/química , Frutas/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Animales , Glicósidos Iridoides/química , Glicósidos Iridoides/aislamiento & purificación , Células PC12 , Fitoquímicos/química , Ratas
5.
Yao Xue Xue Bao ; 50(10): 1240-5, 2015 Oct.
Artículo en Zh | MEDLINE | ID: mdl-26837168

RESUMEN

This study was conducted to investigate the paclitaxel loaded by hydrazone bonds in poly(ethylene glycol)-poly(caprolactone) micelles (mPEG-PCL-PTX) on proliferation and apoptosis of human lung cancer A549 cells and its possible mechanisms of anti-tumor activity. The cell proliferation was measured with MTT assay. Flow cytometry were used to analyze the cell cycle. The cell apoptosis was analyzed using Hoechst/P staining. The expression levels of apoptotic genes expression in the mitochondrial apoptosis pathway were detected by RT-PCR and Western blotting, respectively. The mPEG-PCL-PTX could inhibit the proliferation of A549 cells and promote the apoptosis. The Bax, caspase-3 protein expression were increased while Bcl-2 protein expression was decreased in A549 cells. Results showed that the polymer containing hydrazone bond is non-toxic in vitro, the mPEG-PCL-PTX micelles can inhibit the proliferation and induce the apoptosis of A549 cells. Key words: paclitaxel; micelle; A549 cell; proliferation; cell cycle; apoptosis


Asunto(s)
Apoptosis , Neoplasias Pulmonares/patología , Micelas , Paclitaxel/farmacología , Caspasa 3/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular , Humanos , Neoplasias Pulmonares/metabolismo , Poliésteres , Polietilenglicoles , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
6.
Yao Xue Xue Bao ; 49(8): 1130-5, 2014 Aug.
Artículo en Zh | MEDLINE | ID: mdl-25322554

RESUMEN

This study is to investigate the effect of the effective components group of Xiaoshuantongluo (XECG) on neuronal injury induced by oxygen-glucose deprivation (OGD) in primary cortical cultures isolated from SD rat cortex at day 3 and the possible mechanism. Cells were divided into control group, OGD model group and XECG group (1, 3 and 10 mg x L(-1)). The cell viability was assessed with MTT assay and the LDH release rate was measured by enzyme label kit. The cell apoptosis was analyzed using Hoechst staining. RT-PCR was applied to detect the mRNA levels of JAK2 and STAT3. Western blotting was used to detect the expressions of Bcl-2, Bax, p-JAK2 and p-STAT3 proteins. Results showed that XECG resulted in an obvious resistance to oxygen-glucose deprivation-induced cell apoptosis and decrement of cell viability, decrease the cell LDH release rate. XECG could adjust the expression of Bcl-2 and Bax proteins and increase Bcl-2/Bax ratio, up-regulate the expression of p-JAK2 and p-STAT3. In conclusion, XECG could protect against the neuronal injury cells exposed to OGD, which may be relevant to the promotion of JAK2/STAT3 signaling pathway, and impact the expression of Bax and Bcl-2.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Glucosa , Janus Quinasa 2/metabolismo , Neuronas/metabolismo , Oxígeno , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína X Asociada a bcl-2/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 39(4): 721-5, 2014 Feb.
Artículo en Zh | MEDLINE | ID: mdl-25204154

RESUMEN

OBJECTIVE: To discuss the protective effect of Mailuoning injection on ischemia/reperfusion (I/R) injury in rats and its mechanism. METHOD: Healthy male adult Sprague-Dawley (SD) rats were randomly divided into the sham operation group, the model group, the edaravone (3 mg x kg(-1)) control group, and Mailuoning high, middle and low-dose groups (4, 2, 1 mL x kg(-1)), with 10 rats in each group, and administered with drugs through tail intravenous injection. The middle cerebral artery occlusion (MCAO) was adopted to establish the rat ischemia/reperfusion model. After the ischemia for 2 h and reperfusion for 24 h, the pathological changes in neurovascular units (NVU) of brain tissues at the ischemia side was observed by HE staining. The expressions of glialfibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Ibal) were detected by the immunohistochemical method. The expressions of tumor necrosis factor-alpha (TNF-alpha), interleukin 1beta (IL-1beta), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were detected by the western blotting technique. RESULT: Mailuoning injection could significantly improve the pathological changes in cortical penumbra brain tissue UVN of (I/R) rats, reduce the number of GFAP and Ibal positive cells, and significantly decrease the expressions of TNF-alpha, IL-1beta, VCAM-1 and ICAM-1 of brain tissues of I/R rats. CONCLUSION: Mailuoning injection shows an obvious protective effect on UVN of I/R rats. Its mechanism may involve the inhibition of the activation of astrocyte and microglia and the secretion and expression of various inflammatory factors.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Sustancias Protectoras/administración & dosificación , Daño por Reperfusión/prevención & control , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/cirugía , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
8.
Hypertens Res ; 47(5): 1273-1287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438725

RESUMEN

m6A (N6­methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Hipertensión Arterial Pulmonar , Humanos , Metilación , Adenosina/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Animales , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metilación de ARN
9.
Clin Immunol ; 149(1): 11-24, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23886550

RESUMEN

Active amyloid-beta (Aß) immunotherapy is under investigation to prevent or treat Alzheimer disease (AD). We describe here the immunological characterization and protective effect of DNA epitope chimeric vaccines using 6 copies of Aß1-15 fused with PADRE or toxin-derived carriers. These naked 6Aß15-T-Hc chimeric DNA vaccines were demonstrated to induce robust anti-Aß antibodies that could recognize Aß oligomers and inhibit Aß oligomer-mediated neurotoxicity, result in the reduction of cerebral Aß load and Aß oligomers, and improve cognitive function in AD mice, but did not stimulate Aß-specific T cell responses. Notably, toxin-derived carriers as molecular adjuvants were able to substantially promote immune responses, overcome Aß-associated hypo-responsiveness, and elicit long-term Aß-specific antibody response in 6Aß15-T-Hc-immunized AD mice. These findings suggest that our 6Aß15-T-Hc DNA chimeric vaccines can be used as a safe and effective strategy for AD immunotherapy, and toxin-derived carrier proteins are effective molecular adjuvants of DNA epitope vaccines for Alzheimer's disease.


Asunto(s)
Vacunas contra el Alzheimer/administración & dosificación , Péptidos beta-Amiloides/inmunología , Epítopos/inmunología , Inmunoterapia , Fragmentos de Péptidos/inmunología , Vacunas de ADN/administración & dosificación , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/genética , Animales , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón gamma/inmunología , Interleucina-4/inmunología , Vacunas contra la Malaria/inmunología , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fragmentos de Péptidos/genética , Linfocitos T/inmunología
10.
Biochem Biophys Res Commun ; 435(1): 69-75, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23611777

RESUMEN

Pinocembrin (5,7-dihydroxyflavanone) is one of the primary flavonoids in propolis. Angiotensin II (AngII) is a biologically active peptide that induces vasoconstriction via the activation of the angiotensin type 1 receptor (AT1R). In the present study, we investigated the vasorelaxant effect of pinocembrin on AngII-induced vasoconstriction and the molecular mechanism of action. Pinocembrin was observed to inhibit AngII-induced vasoconstriction in rat aortic rings with either intact or denuded endothelium. In endothelium-denuded tissues, pinocembrin (pD́'2pD2(') 4.28±0.15) counteracted the contractions evoked by cumulative concentrations of AngII. In a docking model, pinocembrin showed effective binding at the active site of AT1R. Pinocembrin was shown to inhibit both AngII-induced Ca(2+) release from internal stores and Ca(2+) influx. Moreover, the increase in the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and myosin light chain 2 (MLC2) induced by AngII was blocked by pinocembrin. These results demonstrate that pinocembrin inhibits AngII-induced rat aortic ring contraction, and these inhibitory effects may be related to the reduction of the AngII-induced increase in [Ca(2+)]i and ERK1/2 activation via blocking AT1R.


Asunto(s)
Aorta Torácica/fisiología , Calcio/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavanonas/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Vasoconstricción/efectos de los fármacos , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Aorta Torácica/citología , Aorta Torácica/metabolismo , Western Blotting , Miosinas Cardíacas/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endotelio Vascular/fisiología , Activación Enzimática/efectos de los fármacos , Flavanonas/metabolismo , Técnicas In Vitro , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
11.
Vaccine ; 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37816654

RESUMEN

Tetanus toxin (TeNT) is a protein toxin produced by Clostridium tetani bacteria, which causes hyperreflexia and rhabdomyolysis by spastic paralysis. Like botulinum neurotoxin, TeNT comprises a heavy chain (HC) and a light chain (LC) linked via an interchain disulfide bond, which include the following three functional domains: a receptor-binding domain (Hc), a translocation domain (HN), and a catalytic domain (LC). Herein, we produced and characterized three functional domains of TeNT and three types of TeNT-derived L-HN fragments (TL-HN, TL-GS-HN and TL-2A-HN), which contained L and HN domains but lacked the Hc domain. The immunological effects of these different functional domains or fragments of TeNT were explored in an animal model. Our investigations showed the TL-HN functional fragment provided the best immunoprotection among all the TeNT functional domains. The TL-HN fragment, as a protective antigen, induced the highest levels of neutralizing antibodies, indicating that it might contain some crucial epitopes. Further experiments revealed that the protective effect of TL-HN was superior to that of the THc, TL, or THN fragments, either individually or in combination. Therefore, the TL-HN fragment exerts an important function in immune protection against tetanus toxin, providing a good basis for the development of TeNT vaccines or antibodies, and could serve as a promising subunit vaccine to replace THc or tetanus toxoid (TT).

12.
Front Immunol ; 14: 1152881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153557

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Macrófagos/metabolismo , Insuficiencia Cardíaca/metabolismo
13.
Int Immunopharmacol ; 118: 109994, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37098656

RESUMEN

Alzheimer's disease (AD) is a common chronic neurodegenerative disease. Some studies have suggested that dysregulation of microglia activation and the resulting neuroinflammation play an important role in the development of AD pathology. Activated microglia have both M1 and M2 phenotypes and inhibition of M1 phenotype while stimulating M2 phenotype has been considered as a potential treatment for neuroinflammation-related diseases. Baicalein is a class of flavonoids with anti-inflammatory, antioxidant and other biological activities, but its role in AD and the regulation of microglia are limited. The purpose of this study was to investigate the effect of baicalein on the activation of microglia in AD model mice and the related molecular mechanism. Our results showed that baicalein significantly improved the learning and memory ability and AD-related pathology of 3 × Tg-AD mice, inhibited the level of pro-inflammatory factors TNF-α, IL-1ß and IL-6, promoted the production of anti-inflammatory factors IL-4 and IL-10, and regulated the microglia phenotype through CX3CR1/NF-κB signaling pathway. In conclusion, baicalein can regulate the phenotypic transformation of activated microglia and reduce neuroinflammation through CX3CR1/NF-κB pathway, thereby improving the learning and memory ability of 3 × Tg-AD mice.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , FN-kappa B/metabolismo , Ratones Transgénicos , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Microglía , Antiinflamatorios/farmacología , Receptor 1 de Quimiocinas CX3C/metabolismo
14.
J Asian Nat Prod Res ; 14(11): 1084-92, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23106500

RESUMEN

Epoxyeicosatrienoic acids (EETs) and their regulating enzyme soluble epoxide hydrolase (sEH) have been associated with ischemic stroke. Salvianolic acid A (SAA) is proved to display potent cerebroprotection. However, little information is available about the link between them. This study aimed to investigate whether SAA exhibits its protective effects in rats subjected to middle cerebral artery occlusion (MCAO) through sEH and EETs. The results showed that SAA treatment ameliorated neurological deficits and reduced infarct volume. Notably, the beneficial effects of SAA were attenuated by co-administration of (14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE)), a putative selective EETs antagonist. Furthermore, SAA increased the 14,15-EET levels in the blood and brain of sham and MCAO rats. Assay for hydrolase activity showed that 1 and 3 mg/kg of SAA significantly diminished brain sEH activity of MCAO rats. A fluorescent assay in vitro indicated that SAA could inhibit recombinant human sEH activity in a concentration-dependent manner (IC(50) = 1.62 µmol/l). Immunohistochemical analysis showed that SAA at the doses of 1 and 3 mg/kg significantly decreased sEH protein expression in hippocampus CA1 region of MCAO rats. In conclusion, cerebral protection of SAA is mediated, at least in part, via inhibiting sEH to increase EETs levels.


Asunto(s)
Ácidos Cafeicos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Lactatos/farmacología , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/análisis , Ácido 8,11,14-Eicosatrienoico/sangre , Ácido 8,11,14-Eicosatrienoico/farmacología , Algoritmos , Animales , Epóxido Hidrolasas/análisis , Hipocampo/efectos de los fármacos , Humanos , Isquemia/tratamiento farmacológico , Masculino , Estructura Molecular , Ratas , Ratas Sprague-Dawley
15.
Yao Xue Xue Bao ; 47(2): 168-73, 2012 Feb.
Artículo en Zh | MEDLINE | ID: mdl-22512026

RESUMEN

To screen potential hamster chymase 2 inhibitors, a high-throughput screening (HTS) model was established. Recombinant hamster chymase 2 with active form was cloned and expressed in E. coli. The HTS model with total volume of 50 microL in 384-well microplate was based on fluorescence analysis and was proved sensitive as well as specific (Z' = 0.84). A total of 40 080 samples (including 28 060 compounds and 12 020 natural products) were screened, and 613 samples with inhibition greater than 90% were selected for further rescreening. Finally, compounds J16647 and J16648 were identified with high inhibitory activity on chymase 2, and whose IC50 values were 0.823 and 0.690 micromol x L(-1), respectively.


Asunto(s)
Quimasas/antagonistas & inhibidores , Inhibidores Enzimáticos/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Quimasas/análisis , Cricetinae , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Concentración 50 Inhibidora , Ratas , Relación Estructura-Actividad
16.
Hum Vaccin Immunother ; 18(5): 2048621, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35435814

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic known proteins. Naturally occurring botulism in humans is caused by botulinum serotypes A, B, E, and F. Vaccination is an effective strategy to prevent botulism. In this study, a tetravalent botulinum vaccine (TBV) that can prevent serotypes A, B, E, and F was developed using the C-terminal receptor-binding domain of BoNT (Hc) as an antigen. To develop a suitable vaccine formulation, in vitro binding experiments of antigens and aluminum adjuvant in different buffers, and in vivo experiments of TBV at different antigen concentrations, were conducted. Our results showed that the optimal vaccine formulation buffer was a pH 6.0 phosphate buffer, and the suitable antigen concentration was 40 or 80 µg/ml of each antigen. A pilot-scale TBV was then prepared and evaluated for immunogenicity and stability. The results showed that TBV could elicit strong protective efficacy against each BoNT in mice, and remain effective after two years of storage at 4ºC, indicating that the preparation was stable and highly effective. Adsorption experiments also showed that the antigens could be well adsorbed by the aluminum adjuvant after 2 years of storage. Our results provide valuable experimental data supporting the development of a tetravalent botulinum vaccine, which is a promising candidate for the prevention of botulinum serotypes A, B, E, and F.


Asunto(s)
Toxinas Botulínicas Tipo A , Toxinas Botulínicas , Botulismo , Clostridium botulinum , Aluminio , Animales , Botulismo/prevención & control , Clostridium botulinum/metabolismo , Ratones , Vacunas Combinadas
17.
Cardiovasc Ther ; 2022: 9615674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692375

RESUMEN

Purpose: L-carnitine (LC) is considered to have good therapeutic potential for myocardial infarction (MI), but its mechanism has not been clarified. The aim of the study is to elucidate the cardioprotective effects of LC in mice following MI and related mechanisms. Methods: ICR mice were treated with LC for 2 weeks after induction of MI with ligation of left anterior descending artery. Electrocardiographic (ECG) recording and echocardiography were used to evaluate cardiac function. H&E staining, TTC staining, and Masson staining were performed for morphological analysis and cardiac fibrosis. ELISA and immunofluorescence were utilized to detect biomarkers and inflammatory mediators. The key proteins in the Bax/Bcl-2 signaling pathway were also examined by Western blot. Results: Both echocardiography and histological measurement showed an improvement in cardiac function and morphology. Biomarkers such as LDH, NT-proBNP, cTnT, and AST, as well as the inflammatory cytokines IL-1ß, IL-6, and TNF-α, were decreased in plasma of mice receiving LC treatment after myocardial injury. In addition, the expression of α-SMA as well as the key proteins in the Bax/Bcl-2 signaling pathway in cardiac myocardium were much lower in mice with LC treatment compared to those without after MI. Conclusions: Our data suggest that LC can effectively ameliorate left ventricular (LV) remodeling after MI, and its beneficial effects on myocardial function and remodeling may be attributable at least in part to anti-inflammatory and inhibition of the Bax/Bcl-2 apoptotic signaling pathway.


Asunto(s)
Infarto del Miocardio , Remodelación Ventricular , Animales , Apoptosis , Carnitina/metabolismo , Carnitina/farmacología , Carnitina/uso terapéutico , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos ICR , Miocardio/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Proteína X Asociada a bcl-2/metabolismo
18.
Nutrients ; 14(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956355

RESUMEN

Cornuside is an iridoid glycoside from Cornus officinalis, with the activities of anti-inflammatory, antioxidant, anti-mitochondrial dysfunction, and neuroprotection. In the present research, a triple-transgenic mice model of AD (3 × Tg-AD) was used to explore the beneficial actions and potential mechanism of cornuside on the memory deficits. We found that cornuside prominently alleviated neuronal injuries, reduced amyloid plaque pathology, inhibited Tau phosphorylation, and repaired synaptic damage. Additionally, cornuside lowered the release of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), lowered the level of malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and the level of glutathione peroxidase (GSH-Px). Cornuside also significantly reduced the activation of astrocytes and modulated A1/A2 phenotypes by the AKT/Nrf2/NF-κB signaling pathway. We further confirmed that LY294002 and Nrf2 silencing could block the cornuside-mediated phenotypic switch of C6 cells induced by microglia conditioned medium (MCM) in response to lipopolysaccharide (LPS), which indicated that the effects of cornuside in astrocyte activation are dependent on AKT/Nrf2/NF-κB signaling. In conclusion, cornuside may regulate the phenotypic conversion of astrocytes, inhibit neuroinflammation and oxidative stress, improve synaptic plasticity, and alleviate cognitive impairment in mice through the AKT/Nrf2/NF-κB axis. Our present work provides an experimental foundation for further research and development of cornuside as a candidate drug for AD management.


Asunto(s)
Enfermedad de Alzheimer , Factor 2 Relacionado con NF-E2 , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Astrocitos/metabolismo , Glucósidos , Inflamación/metabolismo , Iridoides/farmacología , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piranos
19.
Yao Xue Xue Bao ; 46(9): 1058-64, 2011 Sep.
Artículo en Zh | MEDLINE | ID: mdl-22121775

RESUMEN

To screen potential human soluble protein tyrosine phosphatase 1B (PTP1B) inhibitors, a high-throughput screening (HTS) model in 384-well microplate with total volume of 50 microL was established. Recombinant PTP1B was cloned and expressed in E. coli. with its specific substrate 4-nitrophenyl phosphate disodium salt hexahydrate (PNPP). The HTS model was based on enzyme reaction rate with enhanced sensitivity and specificity (Z' = 0.78). A total of 24,240 samples were screened, among them 80 samples with inhibition greater than 70% were selected for further rescreening. Finally, six compounds with high inhibitory activity were identified, whose IC50 values were 21.58, 18.39, 15.37, 11.92, 37.27, and 36.61 microg x mL(-1), separately. The results indicated that the method was stable, sensitive, reproducible and also suitable for high-throughput screening.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Humanos , Concentración 50 Inhibidora , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Sensibilidad y Especificidad , Vanadatos/farmacología
20.
Animal Model Exp Med ; 4(4): 369-380, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34977488

RESUMEN

Objective/Background: Proliferation is a widely recognized trigger for pulmonary hypertension (PH), a life-threatening, progressive disorder of pulmonary blood vessels. This study was aimed to identify some proliferation associated genes/targets for better comprehension of PH pathogenesis. Methods: Human pulmonary arterial smooth muscle cells (hPASMCs) were cultured in the presence or absence of human recombinant platelet derived growth factor (rhPDGF)-BB. Cells were collected for metabolomics or transcriptomics study. Gene profiling of lungs of PH rats after hypoxia exposure or of PH patients were retrieved from GEO database. Results: 90 metabolites (VIP score >1, fold change >2 or <0.5 and p < .05) and 2701 unique metabolism associated genes (MAGs) were identified in rhPDGF-BB treated hPASMCs compared to control cells. In addition, 1151 differentially expressed genes (313 upregulated and 838 downregulated) were identified in rhPDGF-BB treated hPASMCs compared to control cells (fold change >2 or <0.5 and p < .05). 152 differentially expressed MAGs were then determined, out of which 9 hub genes (IL6, CXCL8, CCL2, CXCR4, CCND1, PLAUR, PLAU, HBEGF and F3) were defined as core proliferation associated hub genes in protein proten interaction analysis. In addition, the hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.88). The expression of CXCR4, as one of the hub genes, was positively correlated to immune cell infiltrates. Conclusion: Our findings revealed some key proliferation associated genes in PH, which provide the crucial information concerning complex metabolic reprogramming and inflammatory modulation in response to proliferation signals and might offer therapeutic gains for PH.


Asunto(s)
Hipertensión Pulmonar , Animales , Biomarcadores/metabolismo , Proliferación Celular/genética , Humanos , Hipertensión Pulmonar/genética , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA