Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Microbiol ; 23(11): 6828-6843, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34554631

RESUMEN

The use of nitrogen fertilizer on bioenergy crops such as switchgrass results in increased costs, nitrogen leaching and emissions of N2 O, a potent greenhouse gas. Intercropping with nitrogen-fixing alfalfa has been proposed as an environmentally sustainable alternative, but the effects of synthetic fertilizer versus intercropping on soil microbial community functionality remain uncharacterized. We analysed 24 metagenomes from the upper soil layer of agricultural fields from Prosser, WA over two growing seasons and representing three agricultural practices: unfertilized switchgrass (control), fertilized switchgrass and switchgrass intercropped with alfalfa. The synthetic fertilization and intercropping did not result in major shifts of microbial community taxonomic and functional composition compared with the control plots, but a few significant changes were noted. Most notably, mycorrhizal fungi, ammonia-oxidizing archaea and bacteria increased in abundance with intercropping and fertilization. However, only betaproteobacterial ammonia-oxidizing bacteria abundance in fertilized plots significantly correlated to N2 O emission and companion qPCR data. Collectively, a short period of intercropping elicits minor but significant changes in the soil microbial community toward nitrogen preservation and that intercropping may be a viable alternative to synthetic fertilization.


Asunto(s)
Microbiota , Micorrizas , Panicum , Agricultura/métodos , Fertilizantes/análisis , Medicago sativa/microbiología , Microbiota/genética , Micorrizas/química , Nitrógeno/análisis , Panicum/microbiología , Suelo/química , Microbiología del Suelo
2.
Environ Microbiol ; 20(6): 2195-2206, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29687586

RESUMEN

Most agricultural N2 O emissions are a consequence of microbial transformations of nitrogen (N) fertilizer, and mitigating increases in N2 O emission will depend on identifying microbial sources and variables influencing their activities. Here, using controlled microcosm and field studies, we found that synthetic N addition in any tested amount stimulated the production of N2 O from ammonia-oxidizing bacteria (AOB), but not archaea (AOA), from a bioenergy crop soil. The activities of these two populations were differentiated by N treatments, with abundance and activity of AOB increasing as nitrate and N2 O production increased. Moreover, as N2 O production increased, the isotopic composition of N2 O was consistent with an AOB source. Relative N2 O contributions by both populations were quantified using selective inhibitors and varying N availability. Complementary field analyses confirmed a positive correlation between N2 O flux and AOB abundance with N application. Collectively, our data indicate that AOB are the major N2 O producers, even with low N addition, and that better-metered N application, complemented by selective inhibitors, could reduce projected N2 O emissions from agricultural soils.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Óxido Nitroso/metabolismo , Microbiología del Suelo , Agricultura , Amoníaco/química , Bacterias/clasificación , Fertilizantes/análisis , Nitrificación , Nitrógeno , Oxidación-Reducción , Suelo/química
3.
Water Environ Res ; 96(5): e11035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38761092

RESUMEN

One alternative adsorbent (AA) and five ion exchange (IX) resins were tested for the removal of per- and polyfluoroalkyl substances (PFAS) from groundwater in pilot-scale columns for up to 19 months using empty bed contact times (EBCTs) representative of full-scale treatment. For the six detected PFAS in the pilot feed water, the long-chain PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], and perfluorohexanesulfonic acid [PFHxS]) were well removed with only PFOA, which is a perfluoroalkyl carboxylic acid (PFCA) eventually breaking through as the media became exhausted. Perfluorobutanesulfonic acid (PFBS), a short-chain perfluorosulfonic acid (PFSA), was also well removed, whereas short-chain PFCAs (perfluoropentanoic acid [PFPeA] and perfluorobutanoic acid [PFBA]) were not removed (i.e., immediate breakthrough). Overall, IX and AA demonstrated superior removal of PFSAs compared to PFCAs (i.e., later breakthrough of PFSAs translating to longer media life). Media life varied, ranging from 6 to 15 months before adsorbents reached a significant PFOA breakthrough. The performance of the two adsorbents piloted at shorter EBCT reasonably predicted the longer (representative) pilot EBCT results (within ±20-30%) for the same adsorbents following data scaling. This suggests that pilot-scale testing may be conducted at a faster pace and therefore more economically. PRACTITIONER POINTS: Long-chain PFAS (PFOA, PFOS, and PFHxS) were well removed by five ion exchange and one alternative adsorbent tested herein. One short-chain PFAS (PFBS) was well removed with no removal of two other short-chain PFAS (PFBA and PFPeA). Performance of the two adsorbents piloted at shorter EBCT reasonably predicted the longer (representative) pilot EBCT results for the same adsorbents following data scaling.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Fluorocarburos/química , Adsorción , Contaminantes Químicos del Agua/química , Proyectos Piloto , Purificación del Agua/métodos
4.
J Environ Qual ; 49(4): 1032-1043, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33016479

RESUMEN

Synthetic fertilizers make up a significant fraction of the energy required to grow switchgrass (Panicum virgatum L.) for ethanol production. A field study compared biosolids and synthetic fertilizers on biomass yield, ethanol production, and nitrous oxide (N2 O) emissions of switchgrass to determine if using an alternative source of nutrient would lower the energy density of the fuel. Minimal N2 O emissions were observed the first year of the study (0.99 ± 1.5 g N2 O ha-1 d-1 for biosolids), with no difference between treatments. Biosolids were added in excess of agronomic rates, and gas samples were collected immediately after irrigation for the subsequent years to examine maximum N2 O emissions. Mean Year 2 emissions increased for fertilizers to 1.8 ± 8 g N2 O ha-1 d-1 (n = 131) and to 3.73 ± 10.2 g N2 O ha-1 d-1 (n = 130) for biosolids-amended soils. Emissions in Year 3 were similar to Year 2. Yield was similar and ranged from 3.7 ± 5 to 11 ± 1.1 and from 5.0 ± 0.2 to 13.4 ± 1.7 Mg ha-1 for biosolids and fertilizer, respectively. The potential ethanol yield was 365 ± 28 L Mg-1 and 374 ± 34 L Mg-1 for the biosolids- and fertilizer-grown grass, respectively. Greenhouse gas emissions associated with fertilizer production were considered for N, P, and K and totaled 1,653 kg carbon dioxide equivalent (CO2 e) ha-1 . The equivalent credits for substitution of biosolids (18 Mg ha-1 ) were -2,492 kg CO2 e ha-1 . Nitrous oxide emissions were calculated based on 1% of total N applied for agronomic applications and were 8,600 and 3,500 g N2 O ha-1 for the biosolids and fertilizer treatments, respectively. Total carbon costs associated with fertilization were 2,700 kg CO2 e ha-1 for fertilizer and 60 kg CO2 e ha-1 for biosolids. Using measured N2 O data would have resulted in lower emissions for both treatments.


Asunto(s)
Panicum , Biosólidos , Etanol , Fertilizantes , Óxido Nitroso/análisis
5.
Environ Microbiol Rep ; 11(5): 727-735, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31430046

RESUMEN

The nitrogen (N) fertilizer required to supply a bioenergy industry with sufficient feedstocks is associated with adverse environmental impacts, including loss of oxidized reactive nitrogen through leaching and the production of the greenhouse gas nitrous oxide (N2 O). We examined effects on crop yield, N fate and the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to conventional fertilizer application or intercropping with N-fixing alfalfa, for N delivery to switchgrass (Panicum virgatum), a potential bioenergy crop. Replicated field plots in Prosser, WA, were sampled over two seasons for reactive nitrogen, N2 O gas emissions, and bacterial and archaeal ammonia monooxygenase gene (amoA) counts. Intercropping with alfalfa (70:30, switchgrass:alfalfa) resulted in reduced dry matter yields compared to fertilized plots, but three times lower N2 O fluxes (≤ 4 g N2 O-N ha-1 d-1 ) than fertilized plots (12.5 g N2 O-N ha-1 d-1 ). In the fertilized switchgrass plots, AOA abundance was greater than AOB abundance, but only AOB abundance was positively correlated with N2 O emissions, implicating AOB as the major producer of N2 O emissions. A life cycle analysis of N2 O emissions suggested the greenhouse gas emissions from cellulosic ethanol produced from switchgrass intercropped with alfalfa cultivation would be 94% lower than emissions from equivalent gasoline usage.


Asunto(s)
Amoníaco/metabolismo , Fertilizantes , Medicago sativa/microbiología , Óxido Nitroso/análisis , Panicum/microbiología , Microbiología del Suelo , Agricultura , Medicago sativa/crecimiento & desarrollo , Oxidación-Reducción , Washingtón
6.
Anc Sci Life ; 36(3): 136-140, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28867857

RESUMEN

BACKGROUND: Anogeissus pendula has various reported ethnomedicinal uses and is reported to contain phenolic compounds which have antioxidant potential. AIM: The present study was undertaken to evaluate the in vitro antioxidant potential and in vivo hepatoprotective activity along with the oxidative stress parameters of stem bark and leaves of Anogeissus pendula for the first time. SETTINGS AND DESIGN: Albino rats were divided into seven groups of six animals each. Healthy control (Group I) and toxic control (Group II) received the vehicle. Group III, IV, V, VI and VII were treated with silymarin (100 mg/kg body weight, orally) and two hydro-alcoholic extracts i.e., APB (stem bark) and APL (leaves) at doses of 200 and 400 mg/kg b. w., orally, respectively. Hepatotoxicity was induced by allyl alcohol. MATERIALS AND METHODS: Albino Wistar rats of either sex between 8-12 weeks old were used. The plant parts were collected from Sawai Madhopur (Rajasthan, India) and extracted with hydro-alcoholic solvent to get two extracts i.e., APB (stem bark) and APL (leaves) which were investigated for the in vitro antioxidant potential through DPPH radical and H2O2 scavenging assay along with in vivo hepatoprotective potential through allyl alcohol induced hepatotoxicity. STATISTICAL ANALYSIS: Statistical comparisons between different groups were done by using one-way ANOVA followed by the Bonferroni test. P < 0.05 was considered significant. RESULTS AND CONCLUSIONS: APB showed more potent activity than APL in case of in vitro antioxidant potential with IC50 of 44.29 µg/ml in DPPH radical scavenging activity and 53.09 µg/ml in hydrogen peroxide scavenging assay. Both the extracts revealed antioxidant and hepatoprotective potentials in a dose dependent manner but more significant results were obtained in case of APB at 400 mg/kg. More amounts of phytoconstituents might be the reason behind the more significant activity of extract of stem bark than that of the leaves.

7.
Environ Microbiol Rep ; 7(2): 354-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25534249

RESUMEN

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) fill key roles in the nitrogen cycle. Thus, well-vetted methods for characterizing their distribution are essential for framing studies of their significance in natural and managed systems. Quantification of the gene coding for one subunit of the ammonia monooxygenase (amoA) by polymerase chain reaction is frequently employed to enumerate the two groups. However, variable amplification of sequence variants comprising this conserved genetic marker for ammonia oxidizers potentially compromises within- and between-system comparisons. We compared the performance of newly designed non-degenerate quantitative polymerase chain reaction primer sets to existing primer sets commonly used to quantify the amoA of AOA and AOB using a collection of plasmids and soil DNA samples. The new AOA primer set provided improved quantification of model mixtures of different amoA sequence variants and increased detection of amoA in DNA recovered from soils. Although both primer sets for the AOB provided similar results for many comparisons, the new primers demonstrated increased detection in environmental application. Thus, the new primer sets should provide a useful complement to primers now commonly used to characterize the environmental distribution of AOA and AOB.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Oxidorreductasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Archaea/enzimología , Archaea/metabolismo , Bacterias/enzimología , Bacterias/metabolismo , Cartilla de ADN/genética , Técnicas Microbiológicas/métodos , Oxidación-Reducción
8.
Environ Microbiol Rep ; 7(2): 312-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25504683

RESUMEN

Ammonia-oxidizing thaumarcheota (AOA) and ammonia-oxidizing bacteria (AOB) differentially influence soil and atmospheric chemistry, but soil properties that control their distributions are poorly understood. In this study, the ammonia monooxygenase gene (amoA) was used to identify and quantify presumptive AOA and AOB and relate their distributions to soil properties in two experimental fields planted with different varieties of switchgrass (Panicum virgatum), a potential bioenergy feedstock. Differences in ammonia oxidizer diversity were associated primarily with soil properties of the two field sites, with pH displaying significant correlations with both AOA and AOB population structure. Percent nitrogen (%N), carbon to nitrogen ratios (C : N), and pH were also correlated with shifts nitrifier population structure. Nitrosotalea-like and Nitrosospira cluster II populations were more highly represented in acidic soils, whereas populations affiliated with Nitrososphaera and Nitrosospira cluster 3A.1 were relatively more abundant in alkaline soils. AOA were the dominant functional group in all plots based on quantitative polymerase chain reaction and high-throughput sequencing analyses. These data suggest that AOA contribute significantly to nitrification rates in carbon and nitrogen rich soils influenced by perennial grasses.


Asunto(s)
Agricultura/métodos , Amoníaco/metabolismo , Archaea/clasificación , Bacterias/clasificación , Biota , Panicum/crecimiento & desarrollo , Microbiología del Suelo , Archaea/genética , Archaea/crecimiento & desarrollo , Archaea/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Carbono/análisis , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Nitrificación , Nitrógeno/análisis , Oxidación-Reducción , Oxidorreductasas/genética , Análisis de Secuencia de ADN , Suelo/química
9.
Environ Toxicol Chem ; 31(3): 646-53, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22180230

RESUMEN

Triclosan (TCS) is a common constituent of personal care products and is frequently present in biosolids. Application of biosolids to land transfers significant amounts of TCS to soils. Because TCS is an antimicrobial and is toxic to some aquatic organisms, concern has arisen that TCS may adversely affect soil organisms. The objective of the present study was to investigate the toxicity and bioaccumulation potential of biosolids-borne TCS in terrestrial micro- and macro-organisms (earthworms). Studies were conducted in two biosolids-amended soils (sand, silty clay loam), following U.S. Environmental Protection Agency (U.S. EPA) guidelines. At the concentrations tested herein, microbial toxicity tests suggested no adverse effects of TCS on microbial respiration, ammonification, and nitrification. The no observed effect concentration for TCS for microbial processes was 10 mg/kg soil. Earthworm subchronic toxicity tests showed that biosolids-borne TCS was not toxic to earthworms at the concentrations tested herein. The estimated TCS earthworm lethal concentration (LC50) was greater than 1 mg/kg soil. Greater TCS accumulation was observed in earthworms incubated in a silty clay loam soil (bioaccumulation factor [BAF] = 12 ± 3.1) than in a sand (BAF = 6.5 ± 0.84). Field-collected earthworms had a significantly smaller BAF value (4.3 ± 0.7) than our laboratory values (6.5-12.0). The BAF values varied significantly with exposure conditions (e.g., soil characteristics, laboratory vs field conditions); however, a value of 10 represents a reasonable first approximation for risk assessment purposes.


Asunto(s)
Antiinfecciosos/toxicidad , Contaminantes del Suelo/toxicidad , Triclosán/toxicidad , Animales , Antiinfecciosos/metabolismo , Nitrificación , Oligoquetos , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Pruebas de Toxicidad Subcrónica , Triclosán/metabolismo , Eliminación de Residuos Líquidos
10.
Environ Toxicol Chem ; 31(9): 2130-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22761010

RESUMEN

Triclosan (TCS) is an antimicrobial compound commonly found in biosolids. Thus, plants grown in biosolids-amended soil may be exposed to TCS. We evaluated the plant toxicity and accumulation potential of biosolids-borne TCS in two vegetables (lettuce and radish) and a pasture grass (bahia grass). Vegetables were grown in growth chambers and grass in a greenhouse. Biosolids-amended soil had TCS concentrations of 0.99, 5.9, and 11 mg/kg amended soil. These TCS concentrations represent typical biosolids containing concentrations of 16 mg TCS/kg applied at agronomic rates for 6 to 70 consecutive years, assuming no TCS loss. Plant yields (dry wt) were not reduced at any TCS concentration and the no observed effect concentration was 11 mg TCS/kg soil for all plants. Significantly greater TCS accumulated in the below-ground biomass than in the above-ground biomass. The average bioaccumulation factors (BAFs) were 0.43 ± 0.38 in radish root, 0.04 ± 0.04 in lettuce leaves, 0.004 ± 0.002 in radish leaves, and <0.001 in bahia grass. Soybean (grain) and corn (leaves) grown in our previous field study where soil TCS concentrations were lower (0.04-0.1 mg/kg) had BAF values of 0.06 to 0.16. Based on the data, we suggest a conservative first approximate BAF value of 0.4 for risk assessment in plants.


Asunto(s)
Antiinfecciosos/toxicidad , Lactuca/efectos de los fármacos , Paspalum/efectos de los fármacos , Raphanus/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Triclosán/toxicidad , Antiinfecciosos/metabolismo , Biomasa , Productos Agrícolas , Grano Comestible/metabolismo , Lactuca/crecimiento & desarrollo , Lactuca/metabolismo , Paspalum/crecimiento & desarrollo , Paspalum/metabolismo , Hojas de la Planta/metabolismo , Raphanus/crecimiento & desarrollo , Raphanus/metabolismo , Suelo , Contaminantes del Suelo/metabolismo , Glycine max/metabolismo , Triclosán/metabolismo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA