Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33690226

RESUMEN

Liver regeneration is critical to survival after traumatic injuries, exposure to hepatotoxins, or surgical interventions, yet the underlying signaling and metabolic pathways remain unclear. In this study, we show that hepatocyte-specific loss of the mitochondrial deacetylase SIRT3 drastically impairs regeneration and worsens mitochondrial function after partial hepatectomy. Sirtuins, including SIRT3, require NAD as a cosubstrate. We previously showed that the NAD precursor nicotinamide riboside (NR) promotes liver regeneration, but whether this involves sirtuins has not been tested. Here, we show that despite their NAD dependence and critical roles in regeneration, neither SIRT3 nor its nuclear counterpart SIRT1 is required for NR to enhance liver regeneration. NR improves mitochondrial respiration in regenerating WT or mutant livers and rapidly increases oxygen consumption and glucose output in cultured hepatocytes. Our data support a direct enhancement of mitochondrial redox metabolism as the mechanism mediating improved liver regeneration after NAD supplementation and exclude signaling via SIRT1 and SIRT3. Therefore, we provide the first evidence to our knowledge for an essential role for a mitochondrial sirtuin during liver regeneration and insight into the beneficial effects of NR.


Asunto(s)
Regeneración Hepática/fisiología , Mitocondrias Hepáticas/fisiología , Niacinamida/análogos & derivados , Compuestos de Piridinio/farmacología , Sirtuina 3/metabolismo , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Regeneración Hepática/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Hepáticas/efectos de los fármacos , Niacinamida/farmacología , Oxidación-Reducción , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 3/genética
2.
Mol Metab ; 32: 136-147, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029223

RESUMEN

OBJECTIVE: Pharmacological agents targeting the mTOR complexes are used clinically as immunosuppressants and anticancer agents and can extend the lifespan of model organisms. An undesirable side effect of these drugs is hyperlipidemia. Although multiple roles have been described for mTOR complex 1 (mTORC1) in lipid metabolism, the etiology of hyperlipidemia remains incompletely understood. The objective of this study was to determine the influence of adipocyte mTORC1 signaling in systemic lipid homeostasis in vivo. METHODS: We characterized systemic lipid metabolism in mice lacking the mTORC1 subunit Raptor (RaptoraKO), the key lipolytic enzyme ATGL (ATGLaKO), or both (ATGL-RaptoraKO) in their adipocytes. RESULTS: Mice lacking mTORC1 activity in their adipocytes failed to completely suppress lipolysis in the fed state and displayed prominent hypertriglyceridemia and hypercholesterolemia. Blocking lipolysis in their adipose tissue restored normal levels of triglycerides and cholesterol in the fed state as well as the ability to clear triglycerides in an oral fat tolerance test. CONCLUSIONS: Unsuppressed adipose lipolysis in the fed state interferes with triglyceride clearance and contributes to hyperlipidemia. Adipose tissue mTORC1 activity is necessary for appropriate suppression of lipolysis and for the maintenance of systemic lipid homeostasis.


Asunto(s)
Adipocitos/metabolismo , Hiperlipidemias/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , Hiperlipidemias/prevención & control , Lipólisis , Diana Mecanicista del Complejo 1 de la Rapamicina/deficiencia , Ratones , Ratones Noqueados , Ratones Transgénicos
3.
Elife ; 72018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29893687

RESUMEN

Mitochondrial NAD levels influence fuel selection, circadian rhythms, and cell survival under stress. It has alternately been argued that NAD in mammalian mitochondria arises from import of cytosolic nicotinamide (NAM), nicotinamide mononucleotide (NMN), or NAD itself. We provide evidence that murine and human mitochondria take up intact NAD. Isolated mitochondria preparations cannot make NAD from NAM, and while NAD is synthesized from NMN, it does not localize to the mitochondrial matrix or effectively support oxidative phosphorylation. Treating cells with nicotinamide riboside that is isotopically labeled on the nicotinamide and ribose moieties results in the appearance of doubly labeled NAD within mitochondria. Analogous experiments with doubly labeled nicotinic acid riboside (labeling cytosolic NAD without labeling NMN) demonstrate that NAD(H) is the imported species. Our results challenge the long-held view that the mitochondrial inner membrane is impermeable to pyridine nucleotides and suggest the existence of an unrecognized mammalian NAD (or NADH) transporter.


Asunto(s)
Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Mononucleótido de Nicotinamida/metabolismo , Animales , Transporte Biológico , Línea Celular , Células HEK293 , Células HL-60 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacología , Compuestos de Piridinio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA