Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674675

RESUMEN

Worldwide, there is a great gap between the demand and supply of organs for transplantations. Organs generated from the patients' cells would not only solve the problem of transplant availability but also overcome the complication of incompatibility and tissue rejection by the host immune system. One of the most promising methods tested for the production of organs in vivo is blastocyst complementation (BC). Regrettably, BC is not suitable for the creation of hearts. We have developed a novel method, induced blastocyst complementation (iBC), to surpass this shortcoming. By applying iBC, we generated chimeric mouse embryos, made up of "host" and "donor" cells. We used a specific cardiac enhancer to drive the expression of the diphtheria toxin gene (dtA) in the "host" cells, so that these cells are depleted from the developing hearts, which now consist of "donor" cells. This is a proof-of-concept study, showing that it is possible to produce allogeneic and ultimately, xenogeneic hearts in chimeric organisms. The ultimate goal is to generate, in the future, human hearts in big animals such as pigs, from the patients' cells, for transplantations. Such a system would generate transplants in a relatively short amount of time, improving the quality of life for countless patients around the world.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Pluripotentes , Ratones , Animales , Humanos , Porcinos , Calidad de Vida , Blastocisto/metabolismo , Corazón
2.
Development ; 141(21): 4127-38, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25273086

RESUMEN

During the early steps of head development, ectodermal patterning leads to the emergence of distinct non-neural and neural progenitor cells. The induction of the preplacodal ectoderm and the neural crest depends on well-studied signalling interactions between the non-neural ectoderm fated to become epidermis and the prospective neural plate. By contrast, the involvement of the non-neural ectoderm in the morphogenetic events leading to the development and patterning of the central nervous system has been studied less extensively. Here, we show that the removal of the rostral non-neural ectoderm abutting the prospective neural plate at late gastrulation stage leads, in mouse and chick embryos, to morphological defects in forebrain and craniofacial tissues. In particular, this ablation compromises the development of the telencephalon without affecting that of the diencephalon. Further investigations of ablated mouse embryos established that signalling centres crucial for forebrain regionalization, namely the axial mesendoderm and the anterior neural ridge, form normally. Moreover, changes in cell death or cell proliferation could not explain the specific loss of telencephalic tissue. Finally, we provide evidence that the removal of rostral tissues triggers misregulation of the BMP, WNT and FGF signalling pathways that may affect telencephalon development. This study opens new perspectives on the role of the neural/non-neural interface and reveals its functional relevance across higher vertebrates.


Asunto(s)
Ectodermo/embriología , Animales , Apoptosis/genética , Apoptosis/fisiología , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Embrión de Pollo , Ectodermo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Cresta Neural/embriología , Cresta Neural/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Embarazo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo
3.
PLoS Biol ; 12(6): e1001890, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24960041

RESUMEN

During early development, modulations in the expression of Nodal, a TGFß family member, determine the specification of embryonic and extra-embryonic cell identities. Nodal has been extensively studied in the mouse, but aspects of its early expression remain unaccounted for. We identified a conserved hotspot for the binding of pluripotency factors at the Nodal locus and called this sequence "highly bound element" (HBE). Luciferase-based assays, the analysis of fluorescent HBE reporter transgenes, and a conditional mutation of HBE allowed us to establish that HBE behaves as an enhancer, is activated ahead of other Nodal enhancers in the epiblast, and is essential to Nodal expression in embryonic stem cells (ESCs) and in the mouse embryo. We also showed that HBE enhancer activity is critically dependent on its interaction with the pluripotency factor Oct4 and on Activin/Nodal signaling. Use of an in vitro model of epiblast maturation, relying on the differentiation of ESCs into epiblast stem cells (EpiSCs), revealed that this process entails a shift in the regulation of Nodal expression from an HBE-driven phase to an ASE-driven phase, ASE being another autoregulatory Nodal enhancer. Deletion of HBE in ESCs or in EpiSCs allowed us to show that HBE, although not necessary for Nodal expression in EpiSCs, is required in differentiating ESCs to activate the differentiation-promoting ASE and therefore controls this regulatory shift. Our findings clarify how early Nodal expression is regulated and suggest how this regulation can promote the specification of extra-embryonic precusors without inducing premature differentiation of epiblast cells. More generally, they open new perspectives on how pluripotency factors achieve their function.


Asunto(s)
Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/fisiología , Proteína Nodal/metabolismo , Animales , Diferenciación Celular , Línea Celular , Estratos Germinativos/citología , Proteínas de Homeodominio/metabolismo , Subunidades beta de Inhibinas/metabolismo , Ratones , Ratones Transgénicos , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
4.
Dev Biol ; 349(2): 350-62, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21047506

RESUMEN

Nodal, a secreted factor known for its conserved functions in cell-fate specification and the establishment of embryonic axes, is also required in mammals to maintain the pluripotency of the epiblast, the tissue that gives rise to all fetal lineages. Although Nodal is expressed as early as E3.5 in the mouse embryo, its regulation and functions at pre- and peri-implantation stages are currently unknown. Sensitive reporter transgenes for two Nodal cis-regulatory regions, the PEE and the ASE, exhibit specific expression profiles before implantation. Mutant and inhibitor studies find them respectively regulated by Wnt/ß-catenin signaling and Activin/Nodal signaling, and provide evidence for localized and heterogeneous activities of these pathways in the inner cell mass, the epiblast and the primitive endoderm. These studies also show that Nodal and its prime effector, FoxH1, are not essential to preimplantation Activin/Nodal signaling. Finally, a strong upregulation of the ASE reporter in implanting blastocysts correlates with a downregulation of the pluripotency factor Nanog in the maturing epiblast. This study uncovers conservation in the mouse blastocyst of Wnt/ß-catenin and Activin/Nodal-dependent activities known to govern Nodal expression and the establishment of polarity in the blastula of other deuterostomes. Our results indicate that these pathways act early on to initiate distinct cell-specification processes in the ICM derivatives. Our data also suggest that the activity of the Activin/Nodal pathway is dampened by interactions with the molecular machinery of pluripotency until just before implantation, possibly delaying cell-fate decisions in the mouse embryo.


Asunto(s)
Embrión de Mamíferos/embriología , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/fisiología , Proteína Nodal/metabolismo , Transducción de Señal/fisiología , Activinas/metabolismo , Animales , Sitios de Unión/genética , Biología Computacional , Secuencia Conservada/genética , Cartilla de ADN/genética , Embrión de Mamíferos/metabolismo , Endodermo/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Genotipo , Estratos Germinativos/metabolismo , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Funciones de Verosimilitud , Ratones , Ratones Transgénicos , Microscopía Confocal , Modelos Genéticos , Proteína Homeótica Nanog , Proteína Nodal/genética , Transducción de Señal/genética , beta-Galactosidasa
5.
Int J Stem Cells ; 15(2): 113-121, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34711704

RESUMEN

The ultimate goal of regenerative medicine is to replace damaged cells, tissues or whole organs, in order to restore their proper function. Stem cell related technologies promise to generate transplants from the patients' own cells. Novel approaches such as blastocyst complementation combined with genome editing techniques open up new perspectives for organ replacement therapies. This review summarizes recent advances in the field and highlights the challenges that still remain to be addressed.

6.
PLoS Biol ; 6(1): e2, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18184035

RESUMEN

In vertebrate embryos, the earliest definitive marker for the neural plate, which will give rise to the entire central nervous system, is the transcription factor Sox2. Although some of the extracellular signals that regulate neural plate fate have been identified, we know very little about the mechanisms controlling Sox2 expression and thus neural plate identity. Here, we use electroporation for gain- and loss-of-function in the chick embryo, in combination with bimolecular fluorescence complementation, two-hybrid screens, chromatin immunoprecipitation, and reporter assays to study protein interactions that regulate expression of N2, the earliest enhancer of Sox2 to be activated and which directs expression to the largest part of the neural plate. We show that interactions between three coiled-coil domain proteins (ERNI, Geminin, and BERT), the heterochromatin proteins HP1alpha and HP1gamma acting as repressors, and the chromatin-remodeling enzyme Brm acting as activator control the N2 enhancer. We propose that this mechanism regulates the timing of Sox2 expression as part of the process of establishing neural plate identity.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas HMGB/biosíntesis , Placa Neural/metabolismo , Factores de Transcripción/biosíntesis , Secuencia de Aminoácidos , Animales , Proteínas Aviares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Embrión de Pollo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Placa Neural/embriología , Unión Proteica , Factores de Transcripción SOXB1 , Factores de Transcripción/genética
7.
Dev Biol ; 327(2): 478-86, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19162002

RESUMEN

In Xenopus, the animal cap is very sensitive to BMP antagonists, which result in neuralization. In chick, however, only cells at the border of the neural plate can be neuralized by BMP inhibition. Here we compare the two systems. BMP antagonists can induce neural plate border markers in both ventral Xenopus epidermis and non-neural chick epiblast. However, BMP antagonism can only neuralize ectodermal cells when the BMP-inhibited cells form a continuous trail connecting them to the neural plate or its border, suggesting that homeogenetic neuralizing factors can only travel between BMP-inhibited cells. Xenopus animal cap explants contain cells fated to contribute to the neural plate border and even to the anterior neural plate, explaining why they are so easily neuralized by BMP-inhibition. Furthermore, chick explants isolated from embryonic epiblast behave like Xenopus animal caps and express border markers. We propose that the animal cap assay in Xenopus and explant assays in the chick are unsuitable for studying instructive signals in neural induction.


Asunto(s)
Biomarcadores/metabolismo , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Comunicación Celular/fisiología , Inducción Embrionaria/fisiología , Placa Neural/fisiología , Trasplantes , Xenopus laevis , Animales , Bioensayo/métodos , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Pollo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placa Neural/citología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología
8.
Sci Rep ; 8(1): 10439, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992973

RESUMEN

ZIC2 mutation is known to cause holoprosencephaly (HPE). A subset of ZIC2 HPE probands harbour cardiovascular and visceral anomalies suggestive of laterality defects. 3D-imaging of novel mouse Zic2 mutants uncovers, in addition to HPE, laterality defects in lungs, heart, vasculature and viscera. A strong bias towards right isomerism indicates a failure to establish left identity in the lateral plate mesoderm (LPM), a phenotype that cannot be explained simply by the defective ciliogenesis previously noted in Zic2 mutants. Gene expression analysis showed that the left-determining NODAL-dependent signalling cascade fails to be activated in the LPM, and that the expression of Nodal at the node, which normally triggers this event, is itself defective in these embryos. Analysis of ChiP-seq data, in vitro transcriptional assays and mutagenesis reveals a requirement for a low-affinity ZIC2 binding site for the activation of the Nodal enhancer HBE, which is normally active in node precursor cells. These data show that ZIC2 is required for correct Nodal expression at the node and suggest a model in which ZIC2 acts at different levels to establish LR asymmetry, promoting both the production of the signal that induces left side identity and the morphogenesis of the cilia that bias its distribution.


Asunto(s)
Mesodermo/embriología , Morfogénesis , Proteína Nodal/metabolismo , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Tipificación del Cuerpo , Cilios , Holoprosencefalia/genética , Ratones , Mutación , Proteínas Nucleares/genética , Fenotipo , Transducción de Señal , Factores de Transcripción/genética
9.
Philos Trans R Soc Lond B Biol Sci ; 369(1657)2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25349448

RESUMEN

Activins and Nodal are members of the transforming growth factor beta (TGF-ß) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-ß-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression.


Asunto(s)
Activinas/metabolismo , Tipificación del Cuerpo/fisiología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Nodal/metabolismo , Transducción de Señal/fisiología , Animales , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Modelos Biológicos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
10.
Nat Commun ; 4: 1837, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673622

RESUMEN

Calcium fluxes have been implicated in the specification of the vertebrate embryonic nervous system for some time, but how these fluxes are regulated and how they relate to the rest of the neural induction cascade is unknown. Here we describe Calfacilitin, a transmembrane calcium channel facilitator that increases calcium flux by generating a larger window current and slowing inactivation of the L-type CaV1.2 channel. Calfacilitin binds to this channel and is co-expressed with it in the embryo. Regulation of intracellular calcium by Calfacilitin is required for expression of the neural plate specifiers Geminin and Sox2 and for neural plate formation. Loss-of-function of Calfacilitin can be rescued by ionomycin, which increases intracellular calcium. Our results elucidate the role of calcium fluxes in early neural development and uncover a new factor in the modulation of calcium signalling.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Embrión de Pollo , Geminina/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Estratos Germinativos/citología , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Células HEK293 , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Morfolinos/farmacología , Placa Neural/efectos de los fármacos , Codorniz
11.
Nat Protoc ; 3(3): 419-26, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18323813

RESUMEN

The introduction of in ovo electroporation a decade ago has helped the chick embryo to become a powerful system to study gene regulation and function during development. Although this is a simple procedure for embryos of 2-d incubation, earlier stages (from laying to early neurulation, 0-1 d) present special challenges. Here we describe a robust and reproducible protocol for electroporation of expression vectors and morpholino oligonucleotides into the epiblast of embryos from soon after laying (stage XI) to stages 6-7 (early neurulation), with precise spatial and temporal control. Within 3 h, about 12 embryos can be electroporated and set up for culture by the New technique; the effects of morpholinos can be assessed immediately after electroporation, and robust overexpression from plasmid DNA is seen 2-3 h after electroporation. These techniques can be used for time-lapse imaging, gain- and loss-of-function experiments and studying gene regulatory elements in living embryos.


Asunto(s)
Electroporación/métodos , Perfilación de la Expresión Génica/métodos , Animales , Embrión de Pollo , Técnicas de Cultivo de Embriones , Regulación Enzimológica de la Expresión Génica/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA