Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Molecules ; 26(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443683

RESUMEN

The aim of this study is to achieve a fully cured thermoset matrix that is heated by a direct electric current passing through the reinforcement fibers i.e., the Joule heating effect. Two types of fibers were used as heating elements for curing the epoxy resins. Kanthal resistance fibers were used as reference heating elements and subsequently, they were replaced by a Torayca Carbon Tow of the same radius. The specimens were cured by the heat produced by a direct electric current passing through the fibers and achieving temperatures of 50 °C and 70 °C. Specimens cured in a conventional oven were also manufactured, to compare the resistance heating method to the conventional one. Next, all specimens were mechanically characterized in a quasi-static three-point bending mode of loading and experimental results were compared to derive useful conclusions concerning the applicability of the technique to polymer/composite materials mass production. Finally, a preliminary economical study concerning power consumption needed for the application of both the traditional oven curing and the carbon fibers heating elements use for the manufacturing of the same amounts of materials is presented, showing a maximum financial benefit that can be achieved, on the order of 68%.

2.
Materials (Basel) ; 16(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36984307

RESUMEN

In adhesive joints used in several industrial applications, the adherends' bonding is made using an adhesive, which is usually an epoxy resin. However, since these adhesives are derived from petroleum fractions, they are harmful to the environment, due to the pollutants produced both during their manufacture and subsequent use. Thus, in recent years, effective steps have been made to replace these adhesives with ecological (green) ones. The present work focuses on the study of aluminum A1050 joints bonded with a green adhesive; the study also involves the electrochemical anodization method applied to adherends for nano-functionalization. The nanostructured aluminum adherends allow the formation of an expanded surface area for adhesion, compared to the non-anodized adherends. For comparison reasons, two different adhesives (Araldite LY1564 and Green Super Sap) were used. In addition, for the same reasons, both anodized and non-anodized aluminum adherends were joined with both types of adhesives. The lap joints were subsequently tested under both shear-tension and three-point bending conditions. The major findings were that aluminum A1050 anodization in all cases resulted in shear strength enhancement of the joints, while joints with both aluminum anodized and non-anodized adherends and bonded with the eco-friendly adhesive showed a superior shear behavior as compared to the respective joints bonded with Araldite adhesive.

3.
Materials (Basel) ; 14(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34772113

RESUMEN

The aim of the present study is to investigate the inclusion geometry and concentration effect on the quasi-static properties of a starch-epoxy hybrid matrix composite. The composites investigated consisted of a starch-epoxy hybrid matrix reinforced with four different glass inclusions such as 3 mm long chopped strands, 0.2 mm long short glass fibers, glass beads (120 µm in diameter) and glass bubbles (65 µm in diameter) at different concentrations. The flexural modulus and the strength of all materials tested were determined using three-point bending tests. The Property Prediction Model (PPM) was applied to predict the experimental findings. The model predicted remarkably well the mechanical behavior of all the materials manufactured and tested. The maximum value of the flexural modulus in the case of the 3 mm long chopped strands was found to be 75% greater than the modulus of the hybrid matrix. Furthermore, adding glass beads in the hybrid matrix led to a simultaneous increase in both the flexural modulus and the strength.

4.
Polymers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806764

RESUMEN

The response of fiber-reinforced polymer composites to an externally applied mechanical excitation is closely related to the microscopic stress transfer mechanisms taking place in the fiber-matrix interphasial region. In particular, in the case of viscoelastic responses, these mechanisms are time dependent. Defining the interphase thickness as the maximum radial distance from the fiber surface where a specific matrix property is affected by the fiber presence, it is important to study its variation with time. In the present investigation, the stress relaxation behavior of a glass fiber-reinforced polymer (GFRP) under flexural conditions was studied. Next, applying the hybrid viscoelastic interphase model (HVIM), developed by the first author, the interphase modulus and interphase thickness were both evaluated, and their variation with time during the stress relaxation test was plotted. It was found that the interphase modulus decreases with the radial distance, being always higher than the bulk matrix modulus. In addition, the interphase thickness increases with time, showing that during stress relaxation, fiber-matrix debonding takes place. Finally, the effect of fiber interaction on the interphase modulus was found. It is observed that fiber interaction depends on both the fiber-matrix degree of adhesion as well as the fiber volume fraction and the time-dependent interphase modulus.

5.
Polymers (Basel) ; 12(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31877625

RESUMEN

Epoxy resin composites with different weight fractions of TiO2 microparticles (1%, 5%, 10%, 15%, 20%) and of TiO2 nanoparticles (0.5%, 1%, 2%, 3%) were prepared. The particle size of the nanoparticles was averaged around 21 nm while the particle size of the micro TiO2 particles was averaged around 0.2 µm. The morphology of the manufactured particulate composites was studied by means of scanning electron microscopy (SEM). The mechanical properties of both nanocomposites (21 nm) and microcomposites (0.2 µm) were investigated and compared through flexural testing. Furthermore, the effect of displacement-rate on the viscoelastic behavior of composite materials was investigated. The flexural tests were carried out at different filler weight fractions and different displacement-rates (0.5, 5, 10, 50 mm/min). The influence of TiO2 micro- and nanoparticles on the mechanical response of the manufactured composites was studied. For micro TiO2 composites, a maximum increase in flexural modulus on the order of 23% was achieved, while, in the nanocomposites, plastification of the epoxy matrix due to the presence of TiO2 nanoparticles was observed. Both behaviors were predicted by the Property Prediction Model (PPM), and a fair agreement between experimental results and theoretical predictions was observed.

6.
Biomed Res Int ; 2019: 7574635, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31016196

RESUMEN

The effect of an electric field within specific intensity limits on the activity of human cells has been previously investigated. However, there are a considerable number of factors that influence the in vitro development of cell populations. In biocompatibility studies, the nature of the substrate and its topography are decisive in osteoblasts bone cells development. Further on, electrical field stimulation may activate biochemical paths that contribute to a faster, more effective self-adjustment and proliferation of specific cell types on various nanosubstrates. Within the present research, an electrical stimulation device has been manufactured and optimum values of parameters that led to enhanced osteoblasts activity, with respect to the alkaline phosphatase and total protein levels, have been found. Homogeneous electric field distribution induced by a highly organized titanium dioxide nanotubes substrate had an optimum effect on cell response. Specific substrate topography in combination with appropriate electrical stimulation enhanced osteoblasts bone cells capacity to self-adjust the levels of their specific biomarkers. The findings are of importance in the future design and development of new advanced orthopaedic materials for hard tissue replacement.


Asunto(s)
Materiales Biocompatibles/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteocitos/efectos de los fármacos , Osteocitos/fisiología , Fosfatasa Alcalina/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Estimulación Eléctrica/métodos , Femenino , Humanos , Persona de Mediana Edad , Nanotubos , Osteoblastos/metabolismo , Osteocitos/metabolismo , Propiedades de Superficie/efectos de los fármacos , Titanio/farmacología
7.
J Biomed Mater Res A ; 100(10): 2546-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22528732

RESUMEN

Titanium and its alloys are the most popular biomaterials replacing hard tissues in implant surgeries. Clinicians are generally pleased by titanium mechanical properties and non-toxicity performances; on the other hand, there have been reported several cases of titanium implantation failure, phenomenon explained sometimes as "non adherence of human tissue to the metallic surface." Yet, researchers reported that titanium surfaces are favorable for osteoblasts adhesion. Therefore, titanium integration into the human body remains an unsolved problem. In the present study, biocompatibility tests were performed on titanium and TiO(2) nanotubes substrates, involving human bone marrow cells. The combination of a newly developed analytical model based on the hybrid interphase concept, applicable to systems consisting of inert materials when in contact with living tissues, together with experimental results, confirmed previous research studies and lead to the conclusion that osteoblasts adhere efficiently to titanium surfaces. However, the present results suggest that osteoblasts strong anchorage at the very first moment of their contact with the metallic material leads to their apoptosis. It is most probable that in several cases this is the reason of failed implantation surgeries involving titanium.


Asunto(s)
Ensayo de Materiales/métodos , Nanotubos/química , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Titanio/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Humanos , Interfase/efectos de los fármacos , Persona de Mediana Edad , Nanotubos/ultraestructura , Osteoblastos/ultraestructura , Seudópodos/efectos de los fármacos , Seudópodos/ultraestructura
8.
J Acoust Soc Am ; 112(4): 1509-22, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12398458

RESUMEN

Analysis of array data from acoustic scattering in a random medium with a small number of isolated targets is performed in order to image and, thereby, localize the spatial position of each target. Because the host medium has random fluctuations in wave speed, the background medium is itself a source of scattered energy. It is assumed, however, that the targets are sufficiently larger and/or more reflective than the background fluctuations so that a clear distinction can be made between targets and background scatterers. In numerical simulations nonreflective boundary conditions are used so as to isolate the effects of the host randomness from those of the spatial boundaries, which can then be treated in a separate analysis. It is shown that the key to successful imaging is finding statistically stable functionals of the data whose extreme values provide estimates of scatterer locations. The best ones are related to the eigenfunctions and eigenvalues of the array response matrix, just as one might expect from prior work on array data processing in complex scattering media having homogeneous backgrounds. The specific imaging functionals studied include matched-field processing and linear subspace methods, such as MUSIC (MUtiple SIgnal Classification). But statistical stability is not characteristic of the frequency domain, which is often the province of these methods. By transforming back into the time domain after first diagonalizing the array data in the frequency domain, one can take advantage of both the time-domain stability and the frequency-domain orthogonality of the relevant eigenfunctions.


Asunto(s)
Modelos Estadísticos , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA