Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nature ; 603(7901): 477-481, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264789

RESUMEN

The tricarboxylic acid (TCA) cycle is a central hub of cellular metabolism, oxidizing nutrients to generate reducing equivalents for energy production and critical metabolites for biosynthetic reactions. Despite the importance of the products of the TCA cycle for cell viability and proliferation, mammalian cells display diversity in TCA-cycle activity1,2. How this diversity is achieved, and whether it is critical for establishing cell fate, remains poorly understood. Here we identify a non-canonical TCA cycle that is required for changes in cell state. Genetic co-essentiality mapping revealed a cluster of genes that is sufficient to compose a biochemical alternative to the canonical TCA cycle, wherein mitochondrially derived citrate exported to the cytoplasm is metabolized by ATP citrate lyase, ultimately regenerating mitochondrial oxaloacetate to complete this non-canonical TCA cycle. Manipulating the expression of ATP citrate lyase or the canonical TCA-cycle enzyme aconitase 2 in mouse myoblasts and embryonic stem cells revealed that changes in the configuration of the TCA cycle accompany cell fate transitions. During exit from pluripotency, embryonic stem cells switch from canonical to non-canonical TCA-cycle metabolism. Accordingly, blocking the non-canonical TCA cycle prevents cells from exiting pluripotency. These results establish a context-dependent alternative to the traditional TCA cycle and reveal that appropriate TCA-cycle engagement is required for changes in cell state.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Diferenciación Celular , Ciclo del Ácido Cítrico , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Animales , Ácido Cítrico/metabolismo , Células Madre Embrionarias , Mamíferos/metabolismo , Ratones , Mitocondrias/metabolismo , Células Madre Pluripotentes
2.
Nat Metab ; 6(1): 127-140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172382

RESUMEN

Mammalian preimplantation development is associated with marked metabolic robustness, and embryos can develop under a wide variety of nutrient conditions, including even the complete absence of soluble amino acids. Here we show that mouse embryonic stem cells (ESCs) capture the unique metabolic state of preimplantation embryos and proliferate in the absence of several essential amino acids. Amino acid independence is enabled by constitutive uptake of exogenous protein through macropinocytosis, alongside a robust lysosomal digestive system. Following transition to more committed states, ESCs reduce digestion of extracellular protein and instead become reliant on exogenous amino acids. Accordingly, amino acid withdrawal selects for ESCs that mimic the preimplantation epiblast. More broadly, we find that all lineages of preimplantation blastocysts exhibit constitutive macropinocytic protein uptake and digestion. Taken together, these results highlight exogenous protein uptake and digestion as an intrinsic feature of preimplantation development and provide insight into the catabolic strategies that enable embryos to sustain viability before implantation.


Asunto(s)
Blastocisto , Células Madre Embrionarias , Ratones , Animales , Blastocisto/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Aminoácidos/metabolismo , Mamíferos/metabolismo
3.
Nat Cell Biol ; 20(1): 46-57, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29255171

RESUMEN

Human pluripotent stem cells (hPSCs) can be directed to differentiate into skeletal muscle progenitor cells (SMPCs). However, the myogenicity of hPSC-SMPCs relative to human fetal or adult satellite cells remains unclear. We observed that hPSC-SMPCs derived by directed differentiation are less functional in vitro and in vivo compared to human satellite cells. Using RNA sequencing, we found that the cell surface receptors ERBB3 and NGFR demarcate myogenic populations, including PAX7 progenitors in human fetal development and hPSC-SMPCs. We demonstrated that hPSC skeletal muscle is immature, but inhibition of transforming growth factor-ß signalling during differentiation improved fusion efficiency, ultrastructural organization and the expression of adult myosins. This enrichment and maturation strategy restored dystrophin in hundreds of dystrophin-deficient myofibres after engraftment of CRISPR-Cas9-corrected Duchenne muscular dystrophy human induced pluripotent stem cell-SMPCs. The work provides an in-depth characterization of human myogenesis, and identifies candidates that improve the in vivo myogenic potential of hPSC-SMPCs to levels that are equal to directly isolated human fetal muscle cells.


Asunto(s)
Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/genética , Receptor ErbB-3/genética , Receptores de Factor de Crecimiento Nervioso/genética , Adulto , Anciano , Sistemas CRISPR-Cas , Diferenciación Celular , Distrofina/genética , Distrofina/metabolismo , Femenino , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/citología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Mioblastos/citología , Miosinas/genética , Miosinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Receptor ErbB-3/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA