RESUMEN
BACKGROUND: Despite the availability of effective therapies for patients with chronic kidney disease, type 2 diabetes, and hypertension (the kidney-dysfunction triad), the results of large-scale trials examining the implementation of guideline-directed therapy to reduce the risk of death and complications in this population are lacking. METHODS: In this open-label, cluster-randomized trial, we assigned 11,182 patients with the kidney-dysfunction triad who were being treated at 141 primary care clinics either to receive an intervention that used a personalized algorithm (based on the patient's electronic health record [EHR]) to identify patients and practice facilitators to assist providers in delivering guideline-based interventions or to receive usual care. The primary outcome was hospitalization for any cause at 1 year. Secondary outcomes included emergency department visits, readmissions, cardiovascular events, dialysis, and death. RESULTS: We assigned 71 practices (enrolling 5690 patients) to the intervention group and 70 practices (enrolling 5492 patients) to the usual-care group. The hospitalization rate at 1 year was 20.7% (95% confidence interval [CI], 19.7 to 21.8) in the intervention group and 21.1% (95% CI, 20.1 to 22.2) in the usual-care group (between-group difference, 0.4 percentage points; P = 0.58). The risks of emergency department visits, readmissions, cardiovascular events, dialysis, or death from any cause were similar in the two groups. The risk of adverse events was also similar in the trial groups, except for acute kidney injury, which was observed in more patients in the intervention group (12.7% vs. 11.3%). CONCLUSIONS: In this pragmatic trial involving patients with the triad of chronic kidney disease, type 2 diabetes, and hypertension, the use of an EHR-based algorithm and practice facilitators embedded in primary care clinics did not translate into reduced hospitalization at 1 year. (Funded by the National Institutes of Health and others; ICD-Pieces ClinicalTrials.gov number, NCT02587936.).
Asunto(s)
Diabetes Mellitus Tipo 2 , Hospitalización , Hipertensión , Insuficiencia Renal Crónica , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/terapia , Hospitalización/estadística & datos numéricos , Hipertensión/epidemiología , Hipertensión/terapia , Diálisis Renal , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia , Medicina de Precisión , Registros Electrónicos de Salud , Algoritmos , Atención Primaria de Salud/estadística & datos numéricosRESUMEN
BACKGROUND AND AIMS: Cell death and inflammation play critical roles in chronic tissue damage caused by cholestatic liver injury leading to fibrosis and cirrhosis. Liver cirrhosis is often associated with kidney damage, which is a severe complication with poor prognosis. Interferon regulatory factor 3 (IRF3) is known to regulate apoptosis and inflammation, but its role in cholestasis remains obscure. In this study. APPROACH AND RESULTS: We discovered increased IRF3 phosphorylation in the liver of patients with primary biliary cholangitis and primary sclerosing cholangitis. In the bile duct ligation model of obstructive cholestasis in mice, we found that tissue damage was associated with increased phosphorylated IRF3 (p-IRF3) in the liver and kidney. IRF3 knockout ( Irf3-/- ) mice showed significantly attenuated liver and kidney damage and fibrosis compared to wide-type mice after bile duct ligation. Cell-death pathways, including apoptosis, necroptosis, and pyroptosis, inflammasome activation, and inflammatory responses were significantly attenuated in Irf3-/- mice. Mechanistically, we show that bile acids induced p-IRF3 in vitro in hepatocytes. In vivo , activated IRF3 positively correlated with increased expression of its target gene, Z-DNA-Binding Protein-1 (ZBP1), in the liver and kidney. Importantly, we also found increased ZBP1 in the liver of patients with primary biliary cholangitis and primary sclerosing cholangitis. We discovered that ZBP1 interacted with receptor interacting protein 1 (RIP1), RIP3, and NLRP3, thereby revealing its potential role in the regulation of cell-death and inflammation pathways. In conclusion. CONCLUSIONS: Our data indicate that bile acid-induced p-IRF3 and the IRF3-ZBP1 axis play a central role in the pathogenesis of cholestatic liver and kidney injury.
Asunto(s)
Colangitis Esclerosante , Colestasis , Cirrosis Hepática Biliar , Animales , Humanos , Ratones , Apoptosis , Ácidos y Sales Biliares/metabolismo , Conductos Biliares/patología , Colangitis Esclerosante/patología , Colestasis/metabolismo , Inflamación/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Riñón/patología , Hígado/patología , Cirrosis Hepática/patología , Cirrosis Hepática Biliar/complicaciones , FosforilaciónRESUMEN
BACKGROUND: Vascular leakage is a deadly complication of severe infections, ranging from bacterial sepsis to malaria. Worldwide, septicemia is among the top 10 causes of lethality because of the shock and multiorgan dysfunction that arise from the host vascular response. In the monoclonal gammopathy-associated capillary leak syndrome (MG-CLS), even otherwise mundane infections induce recurrent septic-like episodes of profound microvascular hyperpermeability and shock. There are no defined genetic risk factors for MG-CLS or effective treatments for acute crises. METHODS: We characterized predicted loss-of-function mutations in PARP15 (poly[ADP-ribose] polymerase 15), a protein of unknown function that is absent in mice, in patients with MG-CLS. We analyzed barrier function in PARP15-deficient vascular endothelial cells and vascular leakage in mice engineered to express WT or loss-of-function variant human PARP15. RESULTS: We discovered several loss-of-function PARP15 variants associated with MG-CLS. These mutations severely reduced PARP15 enzymatic function. The presence of the most frequently detected variant (G628R) correlated with clinical markers of severe vascular leakage. In human microvascular endothelial cells, PARP15 suppressed cytokine-induced barrier disruption by ADP-ribosylating the scaffold protein JIP3 (c-Jun N-terminal kinase-interacting protein 3) and inhibiting p38 MAP kinase activation. Mice expressing enzymatically inactive human PARP15(G628R) were significantly more prone to inflammation-associated vascular leakage than mice expressing WT PARP15 in a p38-dependent fashion. CONCLUSIONS: PARP15 represents a previously unrecognized genetic susceptibility factor for MG-CLS. PARP15-mediated ADP ribosylation is an essential and genetically determined mechanism of the human vascular response to inflammation.
RESUMEN
Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.
Asunto(s)
Lesión Renal Aguda/enzimología , Lesión Renal Aguda/prevención & control , Coenzima A/metabolismo , Ingeniería Metabólica , Oxidorreductasas/metabolismo , Aldehído Reductasa/deficiencia , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Animales , Línea Celular , Femenino , Glucólisis , Células HEK293 , Humanos , Túbulos Renales Proximales/enzimología , Masculino , Ratones , Mutación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato , Multimerización de Proteína , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismoRESUMEN
Change history: In Fig. 1j of this Letter, one data point was inadvertently omitted from the graph for the acute kidney injury (AKI), double knockout (-/-), S-nitrosothiol (SNO) condition at a nitrosylation level of 25.9 pmol mg-1 and the statistical significance given of P = 0.0221 was determined by Fisher's test instead of P = 0.0032 determined by Tukey's test (with normalization for test-day instrument baseline). Figure 1 and its Source Data have been corrected online.
RESUMEN
BACKGROUND: Diabetes is expected to directly impact renal glycosylation, yet to date, there has not been a comprehensive evaluation of alterations in N-glycan composition in the glomeruli of patients with diabetic kidney disease (DKD). METHODS: We used untargeted mass spectrometry imaging to identify N-glycan structures in healthy and sclerotic glomeruli in FFPE sections from needle biopsies of five patients with DKD and three healthy kidney samples. Regional proteomics was performed on glomeruli from additional biopsies from the same patients to compare the abundances of enzymes involved in glycosylation. Secondary analysis of single nuclei transcriptomics (snRNAseq) data was used to inform on transcript levels of glycosylation machinery in different cell types and states. RESULTS: We detected 120 N-glycans, and among them identified twelve of these protein post-translated modifications that were significantly increased in glomeruli. All glomeruli-specific N-glycans contained an N-acetyllactosamine (LacNAc) epitope. Five N-glycan structures were highly discriminant between sclerotic and healthy glomeruli. Sclerotic glomeruli had an additional set of glycans lacking fucose linked to their core, and they did not show tetra-antennary structures that are common in healthy glomeruli. Orthogonal omics analyses revealed lower protein abundance and lower gene expression involved in synthesizing fucosylated and branched N-glycans in sclerotic podocytes. In snRNAseq and regional proteomics analyses, we observed that genes and/or proteins involved in sialylation and LacNAc synthesis were also downregulated in DKD glomeruli, but this alteration remained undetectable by our spatial N-glycomics assay. CONCLUSIONS: Integrative spatial glycomics, proteomics, and transcriptomics revealed protein N-glycosylation characteristic of sclerotic glomeruli in DKD.
RESUMEN
Cholesterol crystal embolism (CCE) implies immunothrombosis, tissue necrosis, and organ failure but no specific treatments are available. As CCE involves complement activation, we speculated that inhibitors of the C5a/C5aR axis would be sufficient to attenuate the consequences of CCE like that with systemic vasculitis. Cholesterol microcrystal injection into the kidney artery of wild-type mice initiated intra-kidney immunothrombosis within a few hours followed by a sudden drop of glomerular filtration rate and ischemic kidney necrosis after 24 hours. Genetic deficiency of either C3 or C5aR prevented immunothrombosis, glomerular filtration rate drop, and ischemic necrosis at 24 hours as did preemptive treatment with inhibitors of either C5a or C5aR. Delayed C5a blockade after crystal injection still resolved crystal clots and prevented all consequences. Thus, selective blockade of C5a or C5aR is sufficient to attenuate the consequences of established CCE and prospective inhibition in high-risk patients may be clinically feasible and safe.
Asunto(s)
Complemento C3 , Complemento C5a , Modelos Animales de Enfermedad , Embolia por Colesterol , Receptor de Anafilatoxina C5a , Animales , Masculino , Ratones , Complemento C3/metabolismo , Complemento C3/antagonistas & inhibidores , Complemento C3/inmunología , Complemento C5a/antagonistas & inhibidores , Complemento C5a/inmunología , Complemento C5a/metabolismo , Embolia por Colesterol/complicaciones , Embolia por Colesterol/diagnóstico , Riñón/patología , Riñón/inmunología , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/inmunología , Microvasos/efectos de los fármacos , Microvasos/patología , Necrosis , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo , Trombosis/etiología , Trombosis/inmunología , Trombosis/prevención & controlRESUMEN
The term atypical hemolytic uremic syndrome has been in use since the mid-1970s. It was initially used to describe the familial or sporadic form of hemolytic uremic syndrome as opposed to the epidemic, typical form of the disease. Over time, the atypical hemolytic uremic syndrome term has evolved into being used to refer to anything that is not Shiga toxin-associated hemolytic uremic syndrome. The term describes a heterogeneous group of diseases of disparate causes, a circumstance that makes defining disease-specific natural history and/or targeted treatment approaches challenging. A working group of specialty-specific experts in the thrombotic microangiopathies was convened to review the validity of this broad term in an era of swiftly advancing science and targeted therapeutics. A Delphi approach was used to define and interrogate some of the key issues related to the atypical hemolytic uremic syndrome nomenclature.
Asunto(s)
Síndrome Hemolítico Urémico Atípico , Técnica Delphi , Terminología como Asunto , Humanos , Síndrome Hemolítico Urémico Atípico/genética , Síndrome Hemolítico Urémico Atípico/diagnóstico , Consenso , Nefrología/normasRESUMEN
Experimental models suggest an important role for mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD) and acute kidney injury (AKI), but little is known regarding the impact of common mitochondrial genetic variation on kidney health. We sought to evaluate associations of inherited mitochondrial DNA (mtDNA) variation with risk of CKD and AKI in a large population-based cohort. We categorized UK Biobank participants who self-identified as white into eight distinct mtDNA haplotypes, which were previously identified based on their associations with phenotypes associated with mitochondrial DNA copy number, a measure of mitochondrial function. We used linear and logistic regression models to evaluate associations of these mtDNA haplotypes with estimated glomerular filtration rate by serum creatinine and cystatin C (eGFRCr-CysC, N = 362,802), prevalent (N = 416 cases) and incident (N = 405 cases) end-stage kidney disease (ESKD), AKI defined by diagnostic codes (N = 14,170 cases), and urine albumin/creatinine ratio (ACR, N = 114,662). The mean age was 57 ± 8 years and the mean eGFR was 90 ± 14 ml/min/1.73 m2. MtDNA haplotype was significantly associated with eGFR (p = 2.8E-12), but not with prevalent ESKD (p = 5.9E-2), incident ESKD (p = 0.93), AKI (p = 0.26), or urine ACR (p = 0.54). The association of mtDNA haplotype with eGFR remained significant after adjustment for diabetes mellitus and hypertension (p = 1.2E-10). When compared to the reference haplotype, mtDNA haplotypes I (ß = 0.402, standard error (SE) = 0.111; p = 2.7E-4), IV (ß = 0.430, SE = 0.073; p = 4.2E-9), and V (ß = 0.233, SE = 0.050; p = 2.7E-6) were each associated with higher eGFR. Among self-identified white UK Biobank participants, mtDNA haplotype was associated with eGFR, but not with ESKD, AKI or albuminuria.
Asunto(s)
Lesión Renal Aguda , Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Persona de Mediana Edad , Anciano , Bancos de Muestras Biológicas , Biobanco del Reino Unido , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/genética , Lesión Renal Aguda/diagnóstico , Tasa de Filtración Glomerular/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Variación Genética , CreatininaRESUMEN
Rationale: Kidney injury is common and associated with worse outcomes in patients with septic shock. Mitochondrial resuscitation with thiamine (vitamin B1) may attenuate septic kidney injury. Objectives: To assess whether thiamine supplementation attenuates kidney injury in septic shock. Methods: The TRPSS (Thiamine for Renal Protection in Septic Shock) trial was a multicenter, randomized, placebo-controlled trial of thiamine versus placebo in septic shock. The primary outcome was change in serum creatinine between enrollment and 72 hours after enrollment. Measurements and Main Results: Eighty-eight patients were enrolled (42 patients received the intervention, and 46 received placebo). There was no significant between-groups difference in creatinine at 72 hours (mean difference, -0.57 mg/dl; 95% confidence interval, -1.18, 0.04; P = 0.07). There was no difference in receipt of kidney replacement therapy (14.3% vs. 21.7%, P = 0.34), acute kidney injury (as defined by stage 3 of the Kidney Disease: Improving Global Outcomes acute kidney injury scale; 54.7% vs. 73.9%, P = 0.07), or mortality (35.7% vs. 54.3%, P = 0.14) between the thiamine and placebo groups. Patients who received thiamine had more ICU-free days (median [interquartile range]: 22.5 [0.0-25.0] vs. 0.0 [0.0-23.0], P < 0.01). In the thiamine-deficient cohort (27.4% of patients), there was no difference in rates of kidney failure (57.1% thiamine vs. 81.5% placebo) or in-hospital mortality (28.6% vs. 68.8%) between groups. Conclusions: In the TRPSS trial, there was no statistically significant difference in the primary outcome of change in creatinine over time. Patients who received thiamine had more ICU-free days, but there was no difference in other secondary outcomes. Clinical trial registered with www.clinicaltrials.gov (NCT03550794).
Asunto(s)
Lesión Renal Aguda , Choque Séptico , Humanos , Tiamina/uso terapéutico , Choque Séptico/complicaciones , Choque Séptico/tratamiento farmacológico , Creatinina , Riñón , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/complicacionesRESUMEN
Nicotinamide adenine dinucleotide (NAD+) levels decline in experimental models of acute kidney injury (AKI). Attenuated enzymatic conversion of tryptophan to NAD+ in tubular epithelium may contribute to adverse cellular and physiological outcomes. Mechanisms underlying defense of tryptophan-dependent NAD+ production are incompletely understood. Here we show that regulation of a bottleneck enzyme in this pathway, quinolinate phosphoribosyltransferase (QPRT) may contribute to kidney resilience. Expression of QPRT declined in two unrelated models of AKI. Haploinsufficient mice developed worse outcomes compared to littermate controls whereas novel, conditional gain-of-function mice were protected from injury. Applying these findings, we then identified hepatocyte nuclear factor 4 alpha (HNF4α) as a candidate transcription factor regulating QPRT expression downstream of the mitochondrial biogenesis regulator and NAD+ biosynthesis inducer PPARgamma coactivator-1-alpha (PGC1α). This was verified by chromatin immunoprecipitation. A PGC1α - HNF4α -QPRT axis controlled NAD+ levels across cellular compartments and modulated cellular ATP. These results propose that tryptophan-dependent NAD+ biosynthesis via QPRT and induced by HNF4α may be a critical determinant of kidney resilience to noxious stressors.
Asunto(s)
Lesión Renal Aguda , Ácido Quinolínico , Animales , Ratones , Lesión Renal Aguda/genética , Factores Nucleares del Hepatocito , Riñón , NAD , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , TriptófanoRESUMEN
BACKGROUND: Deposition of wild-type or mutant transthyretin (TTR) amyloid fibrils in the myocardium causes TTR amyloid cardiomyopathy (ATTR-CM). Targeted therapeutics for ATTR-CM include TTR stabilizers (tafamidis and diflunisal) and oligonucleotide drugs (revusiran, patisiran, and inotersen). TTR stabilizers prevent dissociation of transthyretin tetramers. Transthyretin monomers can misfold and form amyloid fibrils. TTR stabilizers thereby limit amyloid fibrils development and deposition. Oligonucleotide drugs inhibit hepatic synthesis of transthyretin, which decreases transthyretin protein levels and thus the amyloid fibril substrate. AREAS OF UNCERTAINTY: To study the safety and efficacy of targeted therapeutics in patients with ATTR-CM, we performed a pooled analysis. A random-effects model with the Mantel-Haenszel method was used to pool the data. DATA SOURCES: A literature search was performed using PubMed, Cochrane CENTRAL, and Embase databases using the search terms "cardiac amyloidosis" AND "tafamidis" OR "patisiran" OR "inotersen" OR "revusiran" OR "diflunisal." THERAPEUTIC ADVANCES: We identified 6 studies that compared targeted therapeutics with placebo. One study was stopped prematurely because of increased mortality in the targeted therapeutics arm. Pooled analysis included 1238 patients, of which 738 patients received targeted therapeutics and 500 patients received placebo. When compared with placebo, targeted therapeutics significantly reduced all-cause mortality [OR 0.39, 95% confidence interval (CI): 0.16-0.97, P = 0.04]. Only 2 studies reported the effect on cardiovascular-related hospitalizations. There was a trend toward an improvement in global longitudinal strain (mean difference -0.69, 95% CI: -1.44 to 0.05, P = 0.07). When compared with placebo, there was no increase in serious adverse events with targeted therapeutics (OR 1.06, 95% CI: 0.78-1.44, P = 0.72). CONCLUSION: Evidence from the pooled analysis revealed targeted therapeutics improve survival and are well-tolerated. These findings suggest a potential role for targeted therapeutics in the treatment of patients with ATTR-CM.
Asunto(s)
Neuropatías Amiloides Familiares , Cardiomiopatías , Diflunisal , Humanos , Neuropatías Amiloides Familiares/tratamiento farmacológico , Prealbúmina/metabolismo , Prealbúmina/uso terapéutico , Diflunisal/farmacología , Diflunisal/uso terapéutico , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Cardiomiopatías/tratamiento farmacológicoRESUMEN
BACKGROUND: The mechanisms underlying long-term sequelae after AKI remain unclear. Vessel instability, an early response to endothelial injury, may reflect a shared mechanism and early trigger for CKD and heart failure. METHODS: To investigate whether plasma angiopoietins, markers of vessel homeostasis, are associated with CKD progression and heart failure admissions after hospitalization in patients with and without AKI, we conducted a prospective cohort study to analyze the balance between angiopoietin-1 (Angpt-1), which maintains vessel stability, and angiopoietin-2 (Angpt-2), which increases vessel destabilization. Three months after discharge, we evaluated the associations between angiopoietins and development of the primary outcomes of CKD progression and heart failure and the secondary outcome of all-cause mortality 3 months after discharge or later. RESULTS: Median age for the 1503 participants was 65.8 years; 746 (50%) had AKI. Compared with the lowest quartile, the highest quartile of the Angpt-1:Angpt-2 ratio was associated with 72% lower risk of CKD progression (adjusted hazard ratio [aHR], 0.28; 95% confidence interval [CI], 0.15 to 0.51), 94% lower risk of heart failure (aHR, 0.06; 95% CI, 0.02 to 0.15), and 82% lower risk of mortality (aHR, 0.18; 95% CI, 0.09 to 0.35) for those with AKI. Among those without AKI, the highest quartile of Angpt-1:Angpt-2 ratio was associated with 71% lower risk of heart failure (aHR, 0.29; 95% CI, 0.12 to 0.69) and 68% less mortality (aHR, 0.32; 95% CI, 0.15 to 0.68). There were no associations with CKD progression. CONCLUSIONS: A higher Angpt-1:Angpt-2 ratio was strongly associated with less CKD progression, heart failure, and mortality in the setting of AKI.
Asunto(s)
Lesión Renal Aguda , Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Lesión Renal Aguda/complicaciones , Anciano , Angiopoyetinas , Femenino , Insuficiencia Cardíaca/complicaciones , Humanos , Masculino , Pronóstico , Estudios Prospectivos , Insuficiencia Renal Crónica/complicaciones , Factores de RiesgoRESUMEN
Clinical and molecular heterogeneity are common features of human disease. Understanding the basis for heterogeneity has led to major advances in therapy for many cancers and pulmonary diseases such as cystic fibrosis and asthma. Although heterogeneity of risk factors, disease severity, and outcomes in survivors are common features of the acute respiratory distress syndrome (ARDS), many challenges exist in understanding the clinical and molecular basis for disease heterogeneity and using heterogeneity to tailor therapy for individual patients. This report summarizes the proceedings of the 2021 Aspen Lung Conference, which was organized to review key issues related to understanding clinical and molecular heterogeneity in ARDS. The goals were to review new information about ARDS phenotypes, to explore multicellular and multisystem mechanisms responsible for heterogeneity, and to review how best to account for clinical and molecular heterogeneity in clinical trial design and assessment of outcomes. The report concludes with recommendations for future research to understand the clinical and basic mechanisms underlying heterogeneity in ARDS to advance the development of new treatments for this life-threatening critical illness.
Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Pulmón , Factores de Riesgo , Índice de Severidad de la Enfermedad , TóraxRESUMEN
The immune pathways that define treatment response and non-response in lupus nephritis (LN) are unknown. To characterize these intra-kidney pathways, transcriptomic analysis was done on protocol kidney biopsies obtained at flare (initial biopsy (Bx1)) and after treatment (second biopsy (Bx2)) in 58 patients with LN. Glomeruli and tubulointerstitial compartments were isolated using laser microdissection. RNA was extracted and analyzed by nanostring technology with transcript expression from clinically complete responders, partial responders and non-responders compared at Bx1 and Bx2 and to the healthy controls. Top transcripts that differentiate clinically complete responders from non-responders were validated at the protein level by confocal microscopy and urine ELISA. At Bx1, cluster analysis determined that glomerular integrin, neutrophil, chemokines/cytokines and tubulointerstitial chemokines, T cell and leukocyte adhesion genes were able to differentiate non-responders from clinically complete responders. At Bx2, glomerular monocyte, extracellular matrix, and interferon, and tubulointerstitial interferon, complement, and T cell transcripts differentiated non-responders from clinically complete responders. Protein analysis identified several protein products of overexpressed glomerular and tubulointerstitial transcripts at LN flare, recapitulating top transcript findings. Urine complement component 5a and fibronectin-1 protein levels reflected complement and fibronectin expression at flare and after treatment. Thus, transcript analysis of serial LN kidney biopsies demonstrated how gene expression in the kidney changes with clinically successful and unsuccessful therapy. Hence, these insights into the molecular landscape of response and non-response may help align LN management with the pathogenesis of kidney injury.
Asunto(s)
Nefritis Lúpica , Biomarcadores/orina , Biopsia , Complemento C5a , Proteínas del Sistema Complemento , Fibronectinas/genética , Humanos , Integrinas , Interferones , Riñón/patología , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/genética , ARNRESUMEN
BACKGROUND: Voclosporin, a novel calcineurin inhibitor approved for the treatment of adults with lupus nephritis, improved complete renal response rates in patients with lupus nephritis in a phase 2 trial. This study aimed to evaluate the efficacy and safety of voclosporin for the treatment of lupus nephritis. METHODS: This multicentre, double-blind, randomised phase 3 trial was done in 142 hospitals and clinics across 27 countries. Patients with a diagnosis of systemic lupus erythematosus with lupus nephritis according to the American College of Rheumatology criteria, and a kidney biopsy within 2 years that showed class III, IV, or V (alone or in combination with class III or IV) were eligible. Patients were randomly assigned (1:1) to oral voclosporin (23·7 mg twice daily) or placebo, on a background of mycophenolate mofetil (1 g twice daily) and rapidly tapered low-dose oral steroids, by use of an interactive web response system. The primary endpoint was complete renal response at 52 weeks defined as a composite of urine protein creatinine ratio of 0·5 mg/mg or less, stable renal function (defined as estimated glomerular filtration rate [eGFR] ≥60 mL/min/1·73 m2 or no confirmed decrease from baseline in eGFR of >20%), no administration of rescue medication, and no more than 10 mg prednisone equivalent per day for 3 or more consecutive days or for 7 or more days during weeks 44 through 52, just before the primary endpoint assessment. Safety was also assessed. Efficacy analysis was by intention-to-treat and safety analysis by randomised patients receiving at least one dose of study treatment. The trial is registered with ClinicalTrials.gov, NCT03021499. FINDINGS: Between April 13, 2017, and Oct 10, 2019, 179 patients were assigned to the voclosporin group and 178 to the placebo group. The primary endpoint of complete renal response at week 52 was achieved in significantly more patients in the voclosporin group than in the placebo group (73 [41%] of 179 patients vs 40 [23%] of 178 patients; odds ratio 2·65; 95% CI 1·64-4·27; p<0·0001). The adverse event profile was balanced between the two groups; serious adverse events occurred in 37 (21%) of 178 in the voclosporin group and 38 (21%) of 178 patients in the placebo group. The most frequent serious adverse event involving infection was pneumonia, occurring in 7 (4%) patients in the voclosporin group and in 8 (4%) patients in the placebo group. A total of six patients died during the study or study follow-up period (one [<1%] patient in the voclosporin group and five [3%] patients in the placebo group). None of the events leading to death were considered by the investigators to be related to the study treatments. INTERPRETATION: Voclosporin in combination with MMF and low-dose steroids led to a clinically and statistically superior complete renal response rate versus MMF and low-dose steroids alone, with a comparable safety profile. This finding is an important advancement in the treatment of patients with active lupus nephritis. FUNDING: Aurinia Pharmaceuticals.
Asunto(s)
Inhibidores de la Calcineurina/administración & dosificación , Ciclosporina/administración & dosificación , Nefritis Lúpica/tratamiento farmacológico , Adulto , Anciano , Inhibidores de la Calcineurina/efectos adversos , Creatinina/orina , Ciclosporina/efectos adversos , Método Doble Ciego , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Glucocorticoides/administración & dosificación , Humanos , Lupus Eritematoso Sistémico , Masculino , Persona de Mediana Edad , Ácido Micofenólico/uso terapéutico , Resultado del TratamientoRESUMEN
BACKGROUND: B-cell anomalies play a role in the pathogenesis of membranous nephropathy. B-cell depletion with rituximab may therefore be noninferior to treatment with cyclosporine for inducing and maintaining a complete or partial remission of proteinuria in patients with this condition. METHODS: We randomly assigned patients who had membranous nephropathy, proteinuria of at least 5 g per 24 hours, and a quantified creatinine clearance of at least 40 ml per minute per 1.73 m2 of body-surface area and had been receiving angiotensin-system blockade for at least 3 months to receive intravenous rituximab (two infusions, 1000 mg each, administered 14 days apart; repeated at 6 months in case of partial response) or oral cyclosporine (starting at a dose of 3.5 mg per kilogram of body weight per day for 12 months). Patients were followed for 24 months. The primary outcome was a composite of complete or partial remission of proteinuria at 24 months. Laboratory variables and safety were also assessed. RESULTS: A total of 130 patients underwent randomization. At 12 months, 39 of 65 patients (60%) in the rituximab group and 34 of 65 (52%) in the cyclosporine group had a complete or partial remission (risk difference, 8 percentage points; 95% confidence interval [CI], -9 to 25; P = 0.004 for noninferiority). At 24 months, 39 patients (60%) in the rituximab group and 13 (20%) in the cyclosporine group had a complete or partial remission (risk difference, 40 percentage points; 95% CI, 25 to 55; P<0.001 for both noninferiority and superiority). Among patients in remission who tested positive for anti-phospholipase A2 receptor (PLA2R) antibodies, the decline in autoantibodies to anti-PLA2R was faster and of greater magnitude and duration in the rituximab group than in the cyclosporine group. Serious adverse events occurred in 11 patients (17%) in the rituximab group and in 20 (31%) in the cyclosporine group (P = 0.06). CONCLUSIONS: Rituximab was noninferior to cyclosporine in inducing complete or partial remission of proteinuria at 12 months and was superior in maintaining proteinuria remission up to 24 months. (Funded by Genentech and the Fulk Family Foundation; MENTOR ClinicalTrials.gov number, NCT01180036.).
Asunto(s)
Ciclosporina/uso terapéutico , Glomerulonefritis Membranosa/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Rituximab/uso terapéutico , Administración Oral , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Ciclosporina/efectos adversos , Esquema de Medicación , Femenino , Humanos , Factores Inmunológicos/uso terapéutico , Inmunosupresores/efectos adversos , Infusiones Intravenosas , Análisis de Intención de Tratar , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Proteinuria/tratamiento farmacológico , Inducción de Remisión , Rituximab/efectos adversos , Insuficiencia del Tratamiento , Adulto JovenRESUMEN
Hepatorenal syndrome (HRS) is a form of acute kidney injury (AKI) occurring in patients with advanced cirrhosis and is associated with significant morbidity and mortality. The pathophysiology underlying HRS begins with increasing portal pressures leading to the release of vasodilatory substances that result in pooling blood in the splanchnic system and a corresponding reduction in effective circulating volume. Compensatory activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system and release of arginine vasopressin serve to defend mean arterial pressure but at the cost of severe constriction of the renal vasculature, leading to a progressive, often fulminant form of AKI. There are no approved treatments for HRS in the United States, but multiple countries, including much of Europe, use terlipressin, a synthetic vasopressin analogue, as a first-line therapy. CONFIRM (A Multi-Center, Randomized, Placebo Controlled, Double-Blind Study to Confirm Efficacy and Safety of Terlipressin in Subjects With Hepatorenal Syndrome Type 1), the third randomized trial based in North America evaluating terlipressin, met its primary end point of showing greater rates of HRS reversal in the terlipressin arm. However, due to concerns about the apparent increased rates of respiratory adverse events and a lack of evidence for mortality benefit, terlipressin was not approved by the Food and Drug Administration (FDA). We explore the history of regulatory approval for terlipressin in the United States, examine the results from CONFIRM and the concerns they raised, and consider the future role of terlipressin in this critical clinical area of continued unmet need.
Asunto(s)
Lesión Renal Aguda , Síndrome Hepatorrenal , Lesión Renal Aguda/inducido químicamente , Femenino , Síndrome Hepatorrenal/tratamiento farmacológico , Humanos , Lipresina/uso terapéutico , Masculino , Terlipresina/uso terapéutico , Resultado del Tratamiento , Vasoconstrictores/uso terapéuticoRESUMEN
Blocking the complement system as a therapeutic strategy has been proposed for numerous glomerular diseases but presents myriad questions and challenges, not the least of which is demonstrating efficacy and safety. In light of these potential issues and because there are an increasing number of anticomplement therapy trials either planned or under way, the National Kidney Foundation facilitated an all-virtual scientific workshop entitled "Improving Clinical Trials for Anti-Complement Therapies in Complement-Mediated Glomerulopathies." Attended by patient representatives and experts in glomerular diseases, complement physiology, and clinical trial design, the aim of this workshop was to develop standards applicable for designing and conducting clinical trials for anticomplement therapies across a wide spectrum of complement-mediated glomerulopathies. Discussions focused on study design, participant risk assessment and mitigation, laboratory measurements and biomarkers to support these studies, and identification of optimal outcome measures to detect benefit, specifically for trials in complement-mediated diseases. This report summarizes the discussions from this workshop and outlines consensus recommendations.
Asunto(s)
Proteínas Inactivadoras de Complemento , Enfermedades Renales , Proteínas Inactivadoras de Complemento/uso terapéutico , Proteínas del Sistema Complemento , Humanos , RiñónRESUMEN
INTRODUCTION: C3 glomerulopathy (C3G) is a rare, progressive kidney disease resulting from dysregulation of the alternative pathway (AP) of complement. Biomarkers at baseline were investigated in patients with C3G who participated in two phase 2 studies with the factor D (FD) inhibitor, danicopan. METHODS: Patients with biopsy-confirmed C3G, proteinuria ≥500 mg/day, and estimated glomerular filtration rate (eGFR) ≥30 mL/min/1.73 m2 were enrolled into two studies (NCT03369236 and NCT03459443). Biomarker analysis was performed for patients with C3G confirmed by central pathology laboratory re-evaluation. Complement and clinical biomarkers, biopsy composite score, and activity and chronicity indices were assessed at baseline and analyzed by pairwise Spearman correlation analysis. RESULTS: Twenty-nine patients were included in the analysis (median [interquartile range] age: 24.0 [10.0] years). Systemic complement AP activation was evident by reduced median concentrations of C3 and C5, elevated sC5b-9, and normal C4, relative to reference ranges. C3 showed strong pairwise correlations with C5 and sC5b-9 (r = 0.80 and -0.73, respectively; p < 0.0001). Baseline Ba and FD concentrations were inversely correlated with eGFR (r = -0.83 and -0.87, respectively; p < 0.0001). Urinary concentrations of sC5b-9 were correlated with both plasma sC5b-9 and proteinuria (r = 0.69 and r = 0.83, respectively; p < 0.0001). Biopsy activity indices correlated strongly with biomarkers of systemic AP activation, including C3 (r = -0.76, p < 0.0001), whereas chronicity indices aligned more closely with eGFR (r = -0.57, p = 0.0021). CONCLUSION: Associations among complement biomarkers, kidney function, and kidney histology may add to the current understanding of C3G and assist with the characterization of patients with this heterogenous disease.