Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175123

RESUMEN

Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.


Asunto(s)
Cromatina , Virus de la Hepatitis B , Cromatina/genética , Virus de la Hepatitis B/genética , ADN Circular/genética , Nucleosomas , Factor de Unión a CCCTC/genética
2.
PLoS Pathog ; 17(11): e1010032, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34735550

RESUMEN

The ubiquitous host protein, CCCTC-binding factor (CTCF), is an essential regulator of cellular transcription and functions to maintain epigenetic boundaries, stabilise chromatin loops and regulate splicing of alternative exons. We have previously demonstrated that CTCF binds to the E2 open reading frame (ORF) of human papillomavirus (HPV) 18 and functions to repress viral oncogene expression in undifferentiated keratinocytes by co-ordinating an epigenetically repressed chromatin loop within HPV episomes. Keratinocyte differentiation disrupts CTCF-dependent chromatin looping of HPV18 episomes promoting induction of enhanced viral oncogene expression. To further characterise CTCF function in HPV transcription control we utilised direct, long-read Nanopore RNA-sequencing which provides information on the structure and abundance of full-length transcripts. Nanopore analysis of primary human keratinocytes containing HPV18 episomes before and after synchronous differentiation allowed quantification of viral transcript species, including the identification of low abundance novel transcripts. Comparison of transcripts produced in wild type HPV18 genome-containing cells to those identified in CTCF-binding deficient genome-containing cells identifies CTCF as a key regulator of differentiation-dependent late promoter activation, required for efficient E1^E4 and L1 protein expression. Furthermore, our data show that CTCF binding at the E2 ORF promotes usage of the downstream weak splice donor (SD) sites SD3165 and SD3284, to the dominant E4 splice acceptor site at nucleotide 3434. These findings demonstrate that in the HPV life cycle both early and late virus transcription programmes are facilitated by recruitment of CTCF to the E2 ORF.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Diferenciación Celular , Regulación Viral de la Expresión Génica , Papillomavirus Humano 18/genética , Infecciones por Papillomavirus/virología , Empalme del ARN , Proteínas Virales/genética , Factor de Unión a CCCTC/genética , Cromatina/genética , Cromatina/metabolismo , Genoma Viral , Humanos , Queratinocitos/metabolismo , Queratinocitos/virología , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Regiones Promotoras Genéticas , Replicación Viral
3.
Cell Microbiol ; 23(2): e13274, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33006186

RESUMEN

Hepatitis B virus (HBV) infection is of global importance with over 2 billion people exposed to the virus during their lifetime and at risk of progressive liver disease, cirrhosis and hepatocellular carcinoma. HBV is a member of the Hepadnaviridae family that replicates via episomal copies of a covalently closed circular DNA (cccDNA) genome. The chromatinization of this small viral genome, with overlapping open reading frames and regulatory elements, suggests an important role for epigenetic pathways to regulate viral transcription. The chromatin-organising transcriptional insulator protein, CCCTC-binding factor (CTCF), has been reported to regulate transcription in a diverse range of viruses. We identified two conserved CTCF binding sites in the HBV genome within enhancer I and chromatin immunoprecipitation (ChIP) analysis demonstrated an enrichment of CTCF binding to integrated or episomal copies of the viral genome. siRNA knock-down of CTCF results in a significant increase in pre-genomic RNA levels in de novo infected HepG2 cells and those supporting episomal HBV DNA replication. Furthermore, mutation of these sites in HBV DNA minicircles abrogated CTCF binding and increased pre-genomic RNA levels, providing evidence of a direct role for CTCF in repressing HBV transcription.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Elementos de Facilitación Genéticos , Regulación Viral de la Expresión Génica , Virus de la Hepatitis B/fisiología , Transcripción Viral , Sitios de Unión , Línea Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , ADN Viral/metabolismo , Epigenómica , Células Hep G2 , Hepatitis B/virología , Humanos , Mutación , ARN Viral , Replicación Viral
4.
PLoS Biol ; 16(10): e2005752, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30359362

RESUMEN

The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression. CTCF-dependent looping is dependent on the expression of the CTCF-associated Yin Yang 1 (YY1) transcription factor and polycomb repressor complex (PRC) recruitment, resulting in trimethylation of histone H3 at lysine 27. We show that viral oncogene up-regulation during cellular differentiation results from YY1 down-regulation, disruption of viral genome looping, and a loss of epigenetic repression of viral enhancer activity. Our data therefore reveal a key role for CTCF-YY1-dependent looping in the HPV life cycle and identify a regulatory mechanism that could be disrupted in HPV carcinogenesis.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Papillomaviridae/genética , Factor de Transcripción YY1/metabolismo , Factor de Unión a CCCTC/genética , Diferenciación Celular/genética , Cromatina/fisiología , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Epigénesis Genética/genética , Histonas/genética , Humanos , Regiones Promotoras Genéticas/genética , Proteínas Represoras , Factores de Transcripción , Activación Transcripcional/genética , Replicación Viral/genética , Replicación Viral/fisiología , Factor de Transcripción YY1/genética
5.
PLoS Pathog ; 14(4): e1006975, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29630659

RESUMEN

Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 18/fisiología , Queratinocitos/virología , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/virología , Factor de Transcripción STAT3/metabolismo , Replicación Viral/fisiología , Estudios de Casos y Controles , Células Cultivadas , Femenino , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Fosforilación , Lesiones Intraepiteliales Escamosas de Cuello Uterino/metabolismo , Lesiones Intraepiteliales Escamosas de Cuello Uterino/patología , Lesiones Intraepiteliales Escamosas de Cuello Uterino/virología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología
6.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795438

RESUMEN

In papillomavirus infections, the viral genome is established as a double-stranded DNA episome. To segregate the episomes into daughter cells during mitosis, they are tethered to cellular chromatin by the viral E2 protein. We previously demonstrated that the E2 proteins of diverse papillomavirus types, including bovine papillomavirus (BPV) and human papillomavirus 16 (HPV16), associate with the cellular DNA helicase ChlR1. This virus-host interaction is important for the tethering of BPV E2 to mitotic chromatin and the stable maintenance of BPV episomes. The role of the association between E2 and ChlR1 in the HPV16 life cycle is unresolved. Here we show that an HPV16 E2 Y131A mutant (E2Y131A) had significantly reduced binding to ChlR1 but retained transcriptional activation and viral origin-dependent replication functions. Subcellular fractionation of keratinocytes expressing E2Y131A showed a marked change in the localization of the protein. Compared to that of wild-type E2 (E2WT), the chromatin-bound pool of E2Y131A was decreased, concomitant with an increase in nuclear matrix-associated protein. Cell cycle synchronization indicated that the shift in subcellular localization of E2Y131A occurred in mid-S phase. A similar alteration between the subcellular pools of the E2WT protein occurred upon ChlR1 silencing. Notably, in an HPV16 life cycle model in primary human keratinocytes, mutant E2Y131A genomes were established as episomes, but at a markedly lower copy number than that of wild-type HPV16 genomes, and they were not maintained upon cell passage. Our studies indicate that ChlR1 is an important regulator of the chromatin association of E2 and of the establishment and maintenance of HPV16 episomes. IMPORTANCE: Infections with high-risk human papillomaviruses (HPVs) are a major cause of anogenital and oropharyngeal cancers. During infection, the circular DNA genome of HPV persists within the nucleus, independently of the host cell chromatin. Persistence of infection is a risk factor for cancer development and is partly achieved by the attachment of viral DNA to cellular chromatin during cell division. The HPV E2 protein plays a critical role in this tethering by binding simultaneously to the viral genome and to chromatin during mitosis. We previously showed that the cellular DNA helicase ChlR1 is required for loading of the bovine papillomavirus E2 protein onto chromatin during DNA synthesis. Here we identify a mutation in HPV16 E2 that abrogates interaction with ChlR1, and we show that ChlR1 regulates the chromatin association of HPV16 E2 and that this virus-host interaction is essential for viral episome maintenance.


Asunto(s)
ARN Helicasas DEAD-box/genética , ADN Helicasas/genética , ADN Viral/genética , Proteínas de Unión al ADN/genética , Genoma Viral , Papillomavirus Humano 16/genética , Proteínas Oncogénicas Virales/genética , Cromatina/química , Cromatina/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN/genética , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/metabolismo , Dosificación de Gen , Silenciador del Gen , Interacciones Huésped-Patógeno , Papillomavirus Humano 16/metabolismo , Humanos , Queratinocitos/metabolismo , Queratinocitos/virología , Mitosis , Modelos Moleculares , Mutación , Proteínas Oncogénicas Virales/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Cultivo Primario de Células , Unión Proteica , Estructura Secundaria de Proteína , Puntos de Control de la Fase S del Ciclo Celular , Activación Transcripcional
7.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031358

RESUMEN

Rad50-interacting protein 1 (Rint1) associates with the DNA damage response protein Rad50 during the transition from the S phase to the G2/M phase and functions in radiation-induced G2 checkpoint control. It has also been demonstrated that Rint1 is essential in vesicle trafficking from the Golgi apparatus to the endoplasmic reticulum (ER) through an interaction with Zeste-White 10 (ZW10). We have isolated a novel interaction between Rint1 and the human papillomavirus 16 (HPV16) transcription and replication factor E2. E2 binds to Rint1 within its ZW10 interaction domain, and we show that in the absence of E2, Rint1 is localized to the ER and associates with ZW10. E2 expression results in a disruption of the Rint1-ZW10 interaction and an accumulation of nuclear Rint1, coincident with a significant reduction in vesicle movement from the ER to the Golgi apparatus. Interestingly, nuclear Rint1 and members of the Mre11/Rad50/Nbs1 (MRN) complex were found in distinct E2 nuclear foci, which peaked during mid-S phase, indicating that the recruitment of Rint1 to E2 foci within the nucleus may also result in the recruitment of this DNA damage-sensing protein complex. We show that exogenous Rint1 expression enhances E2-dependent virus replication. Conversely, the overexpression of a truncated Rint1 protein that retains the E2 binding domain but not the Rad50 binding domain acts as a dominant negative inhibitor of E2-dependent HPV replication. Put together, these experiments demonstrate that the interaction between Rint1 and E2 has an important function in HPV replication.IMPORTANCE HPV infections are an important driver of many epithelial cancers, including those within the anogenital and oropharyngeal tracts. The HPV life cycle is tightly regulated and intimately linked to the differentiation of the epithelial cells that it infects. HPV replication factories formed in the nucleus are locations where viral DNA is copied to support virus persistence and amplification of infection. The recruitment of specific cellular protein complexes to these factories aids efficient and controlled viral replication. We have identified a novel HPV-host interaction that functions in the cellular response to DNA damage and cell cycle control. We show that the HPV E2 protein targets Rad50-interacting protein 1 (Rint1) to facilitate virus genome replication. These findings add to our understanding of how HPV replicates and the host cell pathways that are targeted by HPV to support virus replication. Understanding these pathways will allow further research into novel inhibitors of HPV genome replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 16/fisiología , Proteínas Oncogénicas Virales/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Viral/biosíntesis , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Origen de Réplica , Puntos de Control de la Fase S del Ciclo Celular
8.
J Virol ; 89(9): 4770-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25694598

RESUMEN

UNLABELLED: Host cell differentiation-dependent regulation of human papillomavirus (HPV) gene expression is required for productive infection. The host cell CCCTC-binding factor (CTCF) functions in genome-wide chromatin organization and gene regulation. We have identified a conserved CTCF binding site in the E2 open reading frame of high-risk HPV types. Using organotypic raft cultures of primary human keratinocytes containing high-risk HPV18 genomes, we show that CTCF recruitment to this conserved site regulates viral gene expression in differentiating epithelia. Mutation of the CTCF binding site increases the expression of the viral oncoproteins E6 and E7 and promotes host cell proliferation. Loss of CTCF binding results in a reduction of a specific alternatively spliced transcript expressed from the early gene region concomitant with an increase in the abundance of unspliced early transcripts. We conclude that high-risk HPV types have evolved to recruit CTCF to the early gene region to control the balance and complexity of splicing events that regulate viral oncoprotein expression. IMPORTANCE: The establishment and maintenance of HPV infection in undifferentiated basal cells of the squamous epithelia requires the activation of a subset of viral genes, termed early genes. The differentiation of infected cells initiates the expression of the late viral transcripts, allowing completion of the virus life cycle. This tightly controlled balance of differentiation-dependent viral gene expression allows the virus to stimulate cellular proliferation to support viral genome replication with minimal activation of the host immune response, promoting virus productivity. Alternative splicing of viral mRNAs further increases the complexity of viral gene expression. In this study, we show that the essential host cell protein CTCF, which functions in genome-wide chromatin organization and gene regulation, is recruited to the HPV genome and plays an essential role in the regulation of early viral gene expression and transcript processing. These data highlight a novel virus-host interaction important for HPV pathogenicity.


Asunto(s)
ADN Viral/metabolismo , Proteínas de Unión al ADN/biosíntesis , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Papillomavirus Humano 18/fisiología , Proteínas Oncogénicas Virales/biosíntesis , Proteínas Represoras/metabolismo , Sitios de Unión , Factor de Unión a CCCTC , Células Cultivadas , Expresión Génica , Humanos , Queratinocitos/virología , Unión Proteica
9.
J Gen Virol ; 96(8): 2274-2285, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25911730

RESUMEN

The human papillomavirus (HPV) E2 protein is a multifunctional protein essential for the control of virus gene expression, genome replication and persistence. E2 is expressed throughout the differentiation-dependent virus life cycle and is functionally regulated by association with multiple viral and cellular proteins. Here, we show for the first time to our knowledge that HPV16 E2 directly associates with the major capsid protein L1, independently of other viral or cellular proteins. We have mapped the L1 binding region within E2 and show that the α-2 helices within the E2 DNA-binding domain mediate L1 interaction. Using cell-based assays, we show that co-expression of L1 and E2 results in enhanced transcription and virus origin-dependent DNA replication. Upon co-expression in keratinocytes, L1 reduces nucleolar association of E2 protein, and when co-expressed with E1 and E2, L1 is partially recruited to viral replication factories. Furthermore, co-distribution of E2 and L1 was detected in the nuclei of upper suprabasal cells in stratified epithelia of HPV16 genome-containing primary human keratinocytes. Taken together, our findings suggest that the interaction between E2 and L1 is important for the regulation of E2 function during the late events of the HPV life cycle.


Asunto(s)
Proteínas de la Cápside/metabolismo , Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/virología , Replicación Viral , Secuencias de Aminoácidos , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Núcleo Celular/virología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación Viral de la Expresión Génica , Papillomavirus Humano 16/química , Papillomavirus Humano 16/genética , Humanos , Queratinocitos/virología , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Unión Proteica , Activación Transcripcional
10.
Curr Opin Virol ; 55: 101257, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35998396

RESUMEN

Persistent virus infections are achieved when the intricate balance of virus replication, host-cell division and successful immune evasion is met. The genomes of persistent DNA viruses are either maintained as extrachromosomal episomes or can integrate into the host genome. Common to both these strategies of persistence is the chromatinisation of viral DNA by cellular histones which, like host DNA, are subject to epigenetic modification. Epigenetic repression of viral genes required for lytic replication occurs, while genes required for latent or persistent infection are maintained in an active chromatin state. Viruses utilise host-cell chromatin insulators, which function to maintain epigenetic boundaries and enforce this strict transcriptional programme. Here, we review insulator protein function in virus transcription control, focussing on CCCTC-binding factor (CTCF) and cofactors. We describe CTCF-dependent activities in virus transcription regulation through epigenetic and promoter-enhancer insulation, three-dimensional chromatin looping and manipulation of transcript splicing.


Asunto(s)
Cromatina , Infecciones por Virus ADN , Infecciones por Virus ADN/genética , ADN Viral/genética , Epigénesis Genética , Humanos , Latencia del Virus/genética , Replicación Viral
11.
Biochem J ; 428(2): 147-61, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20462401

RESUMEN

Following DNA replication, chromatid pairs are held together by a proteinacious complex called cohesin until separation during the metaphase-to-anaphase transition. Accurate segregation is achieved by regulation of both sister chromatid cohesion establishment and removal, mediated by post-translational modification of cohesin and interaction with numerous accessory proteins. Recent evidence has led to the conclusion that cohesin is also vitally important in the repair of DNA lesions and control of gene expression. It is now clear that chromosome segregation is not the only important function of cohesin in the maintenance of genome integrity.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Regulación de la Expresión Génica , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Daño del ADN/genética , Daño del ADN/fisiología , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Modelos Biológicos , Unión Proteica/genética , Unión Proteica/fisiología , Cohesinas
12.
Open Biol ; 11(3): 210004, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33653084

RESUMEN

Infections cause 13% of all cancers globally, and DNA tumour viruses account for almost 60% of these cancers. All viruses are obligate intracellular parasites and hijack host cell functions to replicate and complete their life cycles to produce progeny virions. While many aspects of viral manipulation of host cells have been studied, how DNA tumour viruses manipulate host cell metabolism and whether metabolic alterations in the virus life cycle contribute to carcinogenesis are not well understood. In this review, we compare the differences in central carbon and fatty acid metabolism in host cells following infection, oncogenic transformation, and virus-driven cancer of DNA tumour viruses including: Epstein-Barr virus, hepatitis B virus, human papillomavirus, Kaposi's sarcoma-associated herpesvirus and Merkel cell polyomavirus.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Metabolismo de los Lípidos , Neoplasias/metabolismo , Virus Oncogénicos/patogenicidad , Animales , Humanos , Neoplasias/virología
13.
Cancer Lett ; 501: 172-186, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33359448

RESUMEN

The DNA demethylating agent 5-aza-2'-deoxycytidine (DAC, decitabine) has anti-cancer therapeutic potential, but its clinical efficacy is hindered by DNA damage-related side effects and its use in solid tumours is debated. Here we describe how paracetamol augments the effects of DAC on cancer cell proliferation and differentiation, without enhancing DNA damage. Firstly, DAC specifically upregulates cyclooxygenase-2-prostaglandin E2 pathway, inadvertently providing cancer cells with survival potential, while the addition of paracetamol offsets this effect. Secondly, in the presence of paracetamol, DAC treatment leads to glutathione depletion and finally to accumulation of ROS and/or mitochondrial superoxide, both of which have the potential to restrict tumour growth. The benefits of combined treatment are demonstrated here in head and neck squamous cell carcinoma (HNSCC) and acute myeloid leukaemia cell lines, further corroborated in a HNSCC xenograft mouse model and through mining of publicly available DAC and paracetamol responses. The sensitizing effect of paracetamol supplementation is specific to DAC but not its analogue 5-azacitidine. In summary, the addition of paracetamol could allow for DAC dose reduction, widening its clinical usability and providing a strong rationale for consideration in cancer therapy.


Asunto(s)
Acetaminofén/administración & dosificación , Antimetabolitos Antineoplásicos/administración & dosificación , Decitabina/administración & dosificación , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Leucemia Mieloide/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Acetaminofén/farmacología , Animales , Antimetabolitos Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Decitabina/farmacología , Sinergismo Farmacológico , Células HL-60 , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Leucemia Mieloide/metabolismo , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Superóxidos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Pathol ; 218(4): 467-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19402126

RESUMEN

Head and neck squamous cell carcinoma represents a complex set of neoplasms arising in diverse anatomical locations. The site and stage of the cancer determine whether patients will be treated with single or multi-modality therapy. The HDAC inhibitor LBH589 is effective in treating some haematological neoplasms and shows promise for certain epithelial neoplasms. As with other human cancer cell lines, LBH589 causes up-regulation of p21, G2/M cell cycle arrest, and cell death of human HNSCC cell lines, as measured using flow cytometry and cDNA microarrays. Global RNA expression studies following treatment of the HNSCC cell line FaDu with LBH589 reveal down-regulation of genes required for chromosome congression and segregation (SMC2L1), sister chromatid cohesion (DDX11), and kinetochore structure (CENP-A, CENP-F, and CENP-M); these LBH589-induced changes in gene expression coupled with the down-regulation of MYC and BIRC5 (survivin) provide a plausible explanation for the early mitotic arrest and cell death observed. When LBH589-induced changes in gene expression were compared with gene expression profiles of 41 primary HNSCC samples, many of the genes that were down-regulated by LBH589 showed increased expression in primary HNSCC, suggesting that some patients with HNSCC may respond to treatment with LBH589.


Asunto(s)
Carcinoma de Células Escamosas/patología , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/patología , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Muerte Celular , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Femenino , Citometría de Flujo , Fase G2 , Perfilación de la Expresión Génica , Humanos , Indoles , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Panobinostat
15.
Semin Immunopathol ; 42(2): 159-171, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31919577

RESUMEN

Human papillomaviruses (HPV) are a large family of viruses which contain a circular, double-stranded DNA genome of approximately 8000 base pairs. The viral DNA is chromatinized by the recruitment of cellular histones which are subject to host cell-mediated post-translational epigenetic modification recognized as an important mechanism of virus transcription regulation. The HPV life cycle is dependent on the terminal differentiation of the target cell within epithelia-the keratinocyte. The virus life cycle begins in the undifferentiated basal compartment of epithelia where the viral chromatin is maintained in an epigenetically repressed state, stabilized by distal chromatin interactions between the viral enhancer and early gene region. Migration of the infected keratinocyte towards the surface of the epithelium induces cellular differentiation which disrupts chromatin looping and stimulates epigenetic remodelling of the viral chromatin. These epigenetic changes result in enhanced virus transcription and activation of the virus late promoter facilitating transcription of the viral capsid proteins. In this review article, we discuss the complexity of virus- and host-cell-mediated epigenetic regulation of virus transcription with a specific focus on differentiation-dependent remodelling of viral chromatin during the HPV life cycle.


Asunto(s)
Alphapapillomavirus , Papillomaviridae , Animales , Células Cultivadas , Epigénesis Genética , Humanos , Estadios del Ciclo de Vida , Papillomaviridae/genética , Replicación Viral
16.
Nat Commun ; 11(1): 4287, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855419

RESUMEN

Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.


Asunto(s)
Anomalías Múltiples/etiología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , G-Cuádruplex , Intercambio de Cromátides Hermanas , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Proliferación Celular , ARN Helicasas DEAD-box/química , ADN Helicasas/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Estabilidad Proteica , Seudogenes , ARN Helicasas/genética , ARN Helicasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Síndrome , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Proc Biol Sci ; 276(1662): 1535-44, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19203914

RESUMEN

Viruses that maintain their genomes as extrachromosomal circular DNA molecules and establish infection in actively dividing cells must ensure retention of their genomes within the nuclear envelope in order to prevent genome loss. The loss of nuclear membrane integrity during mitosis dictates that paired host cell chromosomes are captured and organized by the mitotic spindle apparatus before segregation to daughter cells. This prevents inaccurate chromosomal segregation and loss of genetic material. A similar mechanism may also exist for the nuclear retention of extrachromosomal viral genomes or episomes during mitosis, particularly for genomes maintained at a low copy number in latent infections. It has been heavily debated whether such a mechanism exists and to what extent this mechanism is conserved among diverse viruses. Research over the last two decades has provided a wealth of information regarding the mechanisms by which specific tumour viruses evade mitotic and DNA damage checkpoints. Here, we discuss the similarities and differences in how specific viruses tether episomal genomes to host cell chromosomes during mitosis to ensure long-term persistence.


Asunto(s)
Cromosomas/virología , Virus ADN/genética , Genoma Viral , División Celular/fisiología , Núcleo Celular/virología , ADN Viral/química , Herpesvirus Humano 4/genética , Papillomaviridae/genética , Rhadinovirus/genética , Proteínas Virales/fisiología
18.
Int J Oncol ; 35(3): 649-56, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19639186

RESUMEN

Cervical cancer is a major cause of death in women worldwide and is strongly associated with human papillomavirus (HPV) infection. Integration of HPV is thought to be a key step in malignant progression, and is associated with loss of regulation of the viral E6 and E7 oncogenes. Leptomycin B (LMB), a nuclear export inhibitor, has previously been shown to induce apoptosis in primary keratinocytes transduced with the HPV 16 E7 or E6/E7 genes, but not in normal cells. We show here that LMB can also induce apoptosis in derivatives of the W12 cell line that contain either episomal or integrated HPV 16. Cells transduced with HPV 16 E7 or E6/E7, and the episomal and integrated W12 derivatives showed distinct temporal expression patterns of the apoptotic markers activated caspase-3 and M30. The expression of both markers occurred later in the episomal derivatives than in either transduced cells or W12 derivatives containing integrated HPV. These findings suggest that, although LMB can induce apoptosis in keratinocytes containing episomal or integrated HPV 16, genome status is likely to influence the response of HPV-associated anogenital lesions to LMB treatment.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/genética , Neoplasias del Cuello Uterino/virología , Southern Blotting , Western Blotting , Línea Celular Tumoral , Ácidos Grasos Insaturados/farmacología , Femenino , Humanos , Inmunohistoquímica , Queratinocitos/efectos de los fármacos , Queratinocitos/virología , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1773): 20180289, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-30955493

RESUMEN

Most human papillomavirus (HPV) positive head and neck cancers arise in the tonsil crypts; deep invaginations at the tonsil surface that are lined with reticulated epithelium infiltrated by immune cells. As in cervical HPV infections, HPV16 is the most prevalent high-risk type in the oropharyngeal cancers, and a genital-oral route of infection is most likely. However, the natural history of HPV-driven oropharyngeal pathogenesis is an enigma, although there is evidence that it is different to that of cervical disease. It is not known if the virus establishes a productive or abortive infection in keratinocytes of the tonsil crypt, or if viral infections progress to cancer via a neoplastic phase, as in cervical HPV infection. The HPV DNA is more frequently found unintegrated in the cancers of the oropharynx compared to those that arise in the cervix, and may include novel HPV-human DNA hybrids episomes. Here, we review current understanding of HPV biology in the oropharynx and discuss the cell-based systems being used to model the HPV life cycle in tonsil keratinocytes and how they can be used to inform on HPV-driven neoplastic progression in the oropharynx. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.


Asunto(s)
Modelos Animales de Enfermedad , Queratinocitos/virología , Orofaringe/virología , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Animales , Ratones , Ratones Transgénicos
20.
Life Sci Alliance ; 2(2)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918010

RESUMEN

Chronic hepatitis B is one of the world's unconquered diseases with more than 240 million infected subjects at risk of developing liver disease and hepatocellular carcinoma. Hepatitis B virus reverse transcribes pre-genomic RNA to relaxed circular DNA (rcDNA) that comprises the infectious particle. To establish infection of a naïve target cell, the newly imported rcDNA is repaired by host enzymes to generate covalently closed circular DNA (cccDNA), which forms the transcriptional template for viral replication. SAMHD1 is a component of the innate immune system that regulates deoxyribonucleoside triphosphate levels required for host and viral DNA synthesis. Here, we show a positive role for SAMHD1 in regulating cccDNA formation, where KO of SAMHD1 significantly reduces cccDNA levels that was reversed by expressing wild-type but not a mutated SAMHD1 lacking the nuclear localization signal. The limited pool of cccDNA in infected Samhd1 KO cells is transcriptionally active, and we observed a 10-fold increase in newly synthesized rcDNA-containing particles, demonstrating a dual role for SAMHD1 to both facilitate cccDNA genesis and to restrict reverse transcriptase-dependent particle genesis.


Asunto(s)
ADN Circular/genética , Virus de la Hepatitis B/genética , ADN Polimerasa Dirigida por ARN/genética , Proteína 1 que Contiene Dominios SAM y HD/genética , ADN Viral/genética , Técnicas de Inactivación de Genes , Células Hep G2 , Hepatitis B Crónica/enzimología , Hepatitis B Crónica/virología , Humanos , Transcripción Reversa/genética , Activación Transcripcional , Transfección , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA