Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Phytother Res ; 37(10): 4473-4487, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37288731

RESUMEN

Though Morusin is known to induce apoptotic, antiprolifertaive, and autophagic effects through several signaling pathways, the underlying molecular mechanisms of Morusin still remain unclear until now. To elucidate antitumor mechanism of Morusin, cytotoxicity assay, cell cycle analysis, Western blotting, TUNEL assay, RNA interference, immunofluorescense, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor study were applied in this study. Morusin enhanced cytotoxicity, increased the number of TUNEL positive cells, sub-G1 population and induced the cleavages of PARP and caspase3, attenuated the expression of HK2, PKM2, LDH, c-Myc, and Forkhead Box M1 (FOXM1) along with the reduction of glucose, lactate, and ATP in DU145 and PC3 cells. Furthermore, Morusin disrupted the binding of c-Myc and FOXM1 in PC-3 cells, which was supported by String and cBioportal database. Notably, Morusin induced c-Myc degradation mediated by FBW7 and suppressed c-Myc stability in PC3 cells exposed to MG132 and cycloheximide. Also, Morusin generated ROS, while NAC disrupted the capacity of Morusin to reduce the expression of FOXM1, c-Myc, pro-PARP, and pro-caspase3 in PC-3 cells. Taken together, these findings provide scientific evidence that ROS mediated inhibition of FOXM1/c-Myc signaling axis plays a critical role in Morusin induced apoptotic and anti-Warburg effect in prostate cancer cells. Our findings support scientific evidence that ROS mediated inhibition of FOXM1/c-Myc signaling axis is critically involved in apoptotic and anti-Warburg effect of Morusin in prostate cancer cells.


Asunto(s)
Neoplasias de la Próstata , Transducción de Señal , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis , Línea Celular Tumoral , Neoplasias de la Próstata/metabolismo , Proliferación Celular , Proteína Forkhead Box M1/metabolismo
2.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638959

RESUMEN

Though Morusin isolated from the root of Morus alba was known to have antioxidant, anti-inflammatory, antiangiogenic, antimigratory, and apoptotic effects, the underlying antitumor effect of Morusin is not fully understood on the glycolysis of liver cancers. Hence, in the current study, the antitumor mechanism of Morusin was explored in Hep3B and Huh7 hepatocellular carcninomas (HCC) in association with glycolysis and G1 arrest. Herein, Morusin significantly reduced the viability and the number of colonies in Hep3B and Huh7 cells. Moreover, Morusin significantly increased G1 arrest, attenuated the expression of cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) and upregulated p21 and p27 in Hep3B and Huh7 cells. Interestingly, Morusin significantly activated phosphorylation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but attenuated the expression of the p-mammalian target of protein kinase B (AKT), rapamycin (mTOR), c-Myc, hexokinase 2(HK2), pyruvate kinases type M2 (PKM2), and lactate dehydrogenase (LDH) in Hep3B and Huh7 cells. Consistently, Morusin suppressed lactate, glucose, and adenosine triphosphate (ATP) in Hep3B and Huh7 cells. Conversely, the AMPK inhibitor compound C reduced the ability of Morusin to activate AMPK and attenuate the expression of p-mTOR, HK2, PKM2, and LDH-A and suppressed G1 arrest induced by Morusin in Hep3B cells. Overall, these findings suggest that Morusin exerts an antitumor effect in HCCs via AMPK mediated G1 arrest and antiglycolysis as a potent dietary anticancer candidate.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Extractos Vegetales/farmacología , Carcinoma Hepatocelular/patología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hexoquinasa/metabolismo , Humanos , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Morus/química , Raíces de Plantas/química , Serina-Treonina Quinasas TOR/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
3.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808235

RESUMEN

Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles), dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs, including Doxil® (liposome-encapsulated doxorubicin), Abraxane® (albumin-bound paclitaxel), and Oncaspar® (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast, several phytochemicals that were found to be effective in cultured cancer cells and animal studies have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid clearance, resistance, and toxicity. Research to overcome these drawbacks by using phytochemical NPs remains in the early stages of clinical translation. Thus, in the current review, we discuss the progress in nanotechnology, research milestones, the molecular mechanisms of phytochemicals encapsulated in NPs, and clinical implications. Several challenges that must be overcome and future research perspectives are also described.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Nanopartículas/química , Nanotecnología/métodos , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Humanos , Sistema Mononuclear Fagocítico/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/uso terapéutico , Nanotubos de Carbono , Fitoquímicos/administración & dosificación , Puntos Cuánticos
4.
Opt Express ; 27(11): 15891-15897, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163778

RESUMEN

We report a cavity-dumped optical parametric oscillator (OPO) with a ring-type cavity configuration, which is based on periodically poled lithium niobate gain synchronously pumped by a mode-locked Ti:sapphire laser. Because of reduced cavity loss and group velocity dispersion inherent to ring-cavity employment, a wide wavelength tuning capability from 1.02 to 1.65 µm was achieved by the simple displacement of a cavity mirror. At a wavelength of 1.28 µm, the cavity-dumped system provides femtosecond pulses with 42 nJ energy and 50% dumping efficiency. The group delay dispersion (GDD) of the OPO cavity could be characterized through the wavelength tuning behavior with cavity displacement, and its validity was confirmed by the numerical GDD calculation of each optical component within the cavity.

5.
Int J Biol Sci ; 20(9): 3442-3460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993554

RESUMEN

In this study, we explored the oncogenic mechanism of cleavage and polyadenylation-specific factor 6 (CPSF6) in hepatocellular carcinoma (HCC). CPSF6 was overexpressed in HCC tissues with poor survival rates compared to normal tissues. Hence, CPSF6 depletion suppressed cell viability and colony formation, induced apoptosis via PARP cleavage, and increased the sub-G1 population of Hep3B and Huh7 cells. In addition, CPSF6 enhanced the stability of c-Myc via their binding through nuclear co-localization by binding to c-Myc at the site of 258-360. Furthermore, c-Myc degradation by CPSF6 depletion was disturbed by FBW7 depletion or treatment with the proteasomal inhibitor MG132. Additionally, CPSF6 depletion suppressed the Warburg effect by inhibiting glucose, HK2, PKM2, LDH, and lactate; showed a synergistic effect with Sorafenib in Hep3B cells; and inhibited angiogenesis by tube formation and CAM assays, along with decreased expression and production of vascular endothelial growth factor (VEGF). Notably, CPSF6 depletion attenuated PD-L1 expression and increased Granzyme B levels, along with an increase in the percentage of CD4/CD8 cells in the splenocytes of BALB/c nude mice bearing Hep3B cells. Consistently, immunohistochemistry showed that CPSF6 depletion reduced the growth of Hep3B cells in BALB/c mice in orthotopic and xenograft tumor models by inhibiting tumor microenvironment-associated proteins. Overall, these findings suggest that CPSF6 enhances the Warburg effect for immune escape and angiogenesis, leading to cancer progression via c-Myc, mediated by the HK, PD-L1, and VEGF networks, with synergistic potential with sorafenib as a molecular target for liver cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Línea Celular Tumoral , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Neovascularización Patológica/metabolismo , Ratones , Sorafenib/uso terapéutico , Sorafenib/farmacología , Efecto Warburg en Oncología , Ratones Desnudos , Ratones Endogámicos BALB C , Apoptosis , Angiogénesis
6.
Microsc Microanal ; 19 Suppl 5: 17-20, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23920166

RESUMEN

In ferritic stainless steel (FSS), undesirable surface defects of ridging appear during deep drawing. The formation of these defects is attributed to the inhomogeneous distribution of orientations of individual grains. In the present work, a new electron backscattered diffraction R(α)-value map was introduced, and the dependence of the tensile directions on the formation of ridging in an FSS sheet was discussed using this map. The results showed that large grain colonies in the R(α)-value maps lead to the formation of severe ridging in an FSS sheet.

7.
Cells ; 10(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34440834

RESUMEN

Novel target therapy is on the spotlight for effective cancer therapy. Hence, in the present study, the underlying apoptotic mechanism of Morusin was explored in association with miR193a-5p mediated ZNF746/c-Myc signaling axis in colorectal cancer cells (CRCs). Herein, Morusin reduced the viability and the number of colonies in HCT116 and SW480 CRCs. Additionally, Morusin increased sub-G1 population, cleavages of poly (ADP-ribose) polymerase (PARP) and caspase-3 and inhibited the expression of zinc finger protein 746 (ZNF746) and c-Myc in HCT116 and SW480 cells. Conversely, overexpression of ZNF746 suppressed the ability of Morusin to abrogate the expression of c-Myc in HCT116 cells, as ZNF746 enhanced the stability of c-Myc via their direct binding through nuclear colocalization in HCT116 cells by immunofluorescence and immunoprecipitation. Notably, Morusin upregulated miR193a-5p as a tumor suppressor, while miR193a-5p inhibitor masked the ability of Morusin to reduce the expression of ZNF746, c-Myc, and pro-PARP in HCT116 cells. To our knowledge, these findings provide the novel insight on miR193a-5p mediated inhibition of ZNF746/c-Myc signaling in Morusin induced apoptosis in CRCs.


Asunto(s)
Apoptosis/efectos de los fármacos , Flavonoides/farmacología , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Regiones no Traducidas 3' , Antagomirs/metabolismo , Secuencia de Bases , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación hacia Abajo/efectos de los fármacos , Flavonoides/química , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Alineación de Secuencia , Transducción de Señal , Regulación hacia Arriba/efectos de los fármacos
8.
Cells ; 10(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440920

RESUMEN

Since the signal transducer and activator of transcription 3 (STAT3)/programmed death-ligand 1 (PD-L1) signaling plays an important role in tumor-immune microenvironments, in the present study, the role of STAT3/PD-L1 signaling in the apoptotic mechanism of an active ginseng saponin metabolite compound K (CK) was investigated in human prostate cancer cells. Here, CK exerted significant cytotoxicity without hurting RWPE1 normal prostate epithelial cells, increased sub-G1 and cleavage of Poly ADP-ribose polymerase (PARP) and attenuated the expression of pro-PARP and Pro-cysteine aspartyl-specific protease3 (pro-caspase-3) in LANCap, PC-3 and DU145 cells. Further, CK attenuated the expression of p-STAT3 and PD-L1 in DU145 cells along with disrupted the binding of STAT3 to PD-L1. Furthermore, CK effectively abrogated the expression of p-STAT3 and PD-L1 in interferon-gamma (INF-γ)-stimulated DU145cells. Additionally, CK suppressed the expression of vascular endothelial growth factor (VEGF), transforming growth factor-ß (TGF-ß), interleukin 6 (IL-6) and interleukin 10 (IL-10) as immune escape-related genes in DU145 cells. Likewise, as STAT3 targets genes, the expression of CyclinD1, c-Myc and B-cell lymphoma-extra-large (Bcl-xL) was attenuated in CK-treated DU145 cells. Notably, CK upregulated the expression of microRNA193a-5p (miR193a-5p) in DU145 cells. Consistently, miR193a-5p mimic suppressed p-STAT3, PD-L1 and pro-PARP, while miR193a-5p inhibitor reversed the ability of CK to attenuate the expression of p-STAT3, PD-L1 and pro-PARP in DU145 cells. Taken together, these findings support evidence that CK induces apoptosis via the activation of miR193a-5p and inhibition of PD-L1 and STAT3 signaling in prostate cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Ginsenósidos/farmacología , MicroARNs/genética , Neoplasias de la Próstata/genética , Factor de Transcripción STAT3/metabolismo , Apoptosis/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citocinas/genética , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ginsenósidos/química , Humanos , Masculino , Estructura Molecular , Células PC-3 , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de los fármacos
9.
Cancers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638383

RESUMEN

Though UBE2M, an E2 NEDD8-conjugating enzyme, is overexpressed in HepG2, Hep3B, Huh7 and PLC/PRF5 HCCs with poor prognosis by human tissue array and TCGA analysis, its underlying oncogenic mechanism remains unclear. Herein, UBE2M depletion suppressed viability and proliferation and induced cell cycle arrest and apoptosis via cleavages of PARP and caspase 3 and upregulation of p53, Bax and PUMA in HepG2, Huh7 and Hep3B cells. Furthermore, UBE2M depletion activated p53 expression and stability, while the ectopic expression of UBE2M disturbed p53 activation and enhanced degradation of exogenous p53 mediated by MDM2 in HepG2 cells. Interestingly, UBE2M binds to MDM2 or ribosomal protein L11, but not p53 in HepG2 cells, despite crosstalk between p53 and UBE2M. Consistently, the colocalization between UBE2M and MDM2 was observed by immunofluorescence. Notably, L11 was required in p53 activation by UBE2M depletion. Furthermore, UBE2M depletion retarded the growth of HepG2 cells in athymic nude mice along with elevated p53. Overall, these findings suggest that UBE2M promotes cancer progression as a p53 negative regulator by binding to MDM2 and ribosomal protein L11 in HCCs.

10.
Nat Commun ; 12(1): 1294, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637766

RESUMEN

Age-associated muscle atrophy is a debilitating condition associated with loss of muscle mass and function with age that contributes to limitation of mobility and locomotion. However, the underlying mechanisms of how intrinsic muscle changes with age are largely unknown. Here we report that, with age, Mind bomb-1 (Mib1) plays important role in skeletal muscle maintenance via proteasomal degradation-dependent regulation of α-actinin 3 (Actn3). The disruption of Mib1 in myofibers (Mib1ΔMF) results in alteration of type 2 glycolytic myofibers, muscle atrophy, impaired muscle function, and Actn3 accumulation. After chronic exercise, Mib1ΔMF mice show muscle atrophy even at young age. However, when Actn3 level is downregulated, chronic exercise-induced muscle atrophy is ameliorated. Importantly, the Mib1 and Actn3 levels show clinical relevance in human skeletal muscles accompanied by decrease in skeletal muscle function with age. Together, these findings reveal the significance of the Mib1-Actn3 axis in skeletal muscle maintenance with age and suggest the therapeutic potential for the treatment or amelioration of age-related muscle atrophy.


Asunto(s)
Actinina/genética , Actinina/metabolismo , Músculo Esquelético/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Regulación de la Expresión Génica , Genotipo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal , Transcriptoma
11.
J Cachexia Sarcopenia Muscle ; 12(1): 177-191, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33244887

RESUMEN

BACKGROUND: With organismal aging, the hypothalamic-pituitary-gonadal (HPG) activity gradually decreases, resulting in the systemic functional declines of the target tissues including skeletal muscles. Although the HPG axis plays an important role in health span, how the HPG axis systemically prevents functional aging is largely unknown. METHODS: We generated muscle stem cell (MuSC)-specific androgen receptor (Ar) and oestrogen receptor 2 (Esr2) double knockout (dKO) mice and pharmacologically inhibited (Antide) the HPG axis to mimic decreased serum levels of sex steroid hormones in aged mice. After short-term and long-term sex hormone signalling ablation, the MuSCs were functionally analysed, and their aging phenotypes were compared with those of geriatric mice (30-month-old). To investigate pathways associated with sex hormone signalling disruption, RNA sequencing and bioinformatic analyses were performed. RESULTS: Disrupting the HPG axis results in impaired muscle regeneration [wild-type (WT) vs. dKO, P < 0.0001; Veh vs. Antide, P = 0.004]. The expression of DNA damage marker (in WT = 7.0 ± 1.6%, dKO = 32.5 ± 2.6%, P < 0.01; in Veh = 13.4 ± 4.5%, Antide = 29.7 ± 5.5%, P = 0.028) and senescence-associated ß-galactosidase activity (in WT = 3.8 ± 1.2%, dKO = 10.3 ± 1.6%, P < 0.01; in Veh = 2.1 ± 0.4%, Antide = 9.6 ± 0.8%, P = 0.005), as well as the expression levels of senescence-associated genes, p16Ink4a and p21Cip1 , was significantly increased in the MuSCs, indicating that genetic and pharmacological inhibition of the HPG axis recapitulates the progressive aging process of MuSCs. Mechanistically, the ablation of sex hormone signalling reduced the expression of transcription factor EB (Tfeb) and Tfeb target gene in MuSCs, suggesting that sex hormones directly induce the expression of Tfeb, a master regulator of the autophagy-lysosome pathway, and consequently autophagosome clearance. Transduction of the Tfeb in naturally aged MuSCs increased muscle mass [control geriatric MuSC transplanted tibialis anterior (TA) muscle = 34.3 ± 2.9 mg, Tfeb-transducing geriatric MuSC transplanted TA muscle = 44.7 ± 6.7 mg, P = 0.015] and regenerating myofibre size [eMyHC+ tdTomato+ myofibre cross-section area (CSA) in control vs. Tfeb, P = 0.002] after muscle injury. CONCLUSIONS: Our data show that the HPG axis systemically controls autophagosome clearance in MuSCs through Tfeb and prevents MuSCs from senescence, suggesting that sustained HPG activity throughout life regulates autophagosome clearance to maintain the quiescence of MuSCs by preventing senescence until advanced age.


Asunto(s)
Autofagosomas , Mioblastos , Células Madre , Animales , Senescencia Celular , Gónadas , Hipotálamo , Ratones , Músculo Esquelético , Hipófisis , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA