Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 83(1): 352-366, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31385628

RESUMEN

PURPOSE: To establish peripheral nerve stimulation (PNS) thresholds for an ultra-high performance magnetic field gradient subsystem (simultaneous 200-mT/m gradient amplitude and 500-T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42-cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks. METHODS: The MAGNUS head gradient was installed in a whole-body 3T scanner with a custom 16-rung bird-cage transmit/receive RF coil compatible with phased-array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2-4 cm in the superior-inferior and anterior-posterior directions. RESULTS: The x-axis (left-right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z-axis (superior-inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y-axis (anterior-posterior) stimulation was negligible. X-axis and z-axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x-axis and z-axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise-to-diffusion contrast as compared with whole-body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate). CONCLUSION: The PNS threshold of MAGNUS is significantly higher than that for whole-body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.


Asunto(s)
Encéfalo/diagnóstico por imagen , Estimulación Eléctrica , Campos Magnéticos , Neuroimagen/instrumentación , Neuroimagen/métodos , Nervios Periféricos/diagnóstico por imagen , Sistema Nervioso Periférico/diagnóstico por imagen , Adulto , Algoritmos , Diseño de Equipo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Nervios Periféricos/fisiología , Fantasmas de Imagen , Reproducibilidad de los Resultados , Imagen de Cuerpo Entero
2.
Magn Reson Med ; 83(6): 2356-2369, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31763726

RESUMEN

PURPOSE: To develop a highly efficient magnetic field gradient coil for head imaging that achieves 200 mT/m and 500 T/m/s on each axis using a standard 1 MVA gradient driver in clinical whole-body 3.0T MR magnet. METHODS: A 42-cm inner diameter head-gradient used the available 89- to 91-cm warm bore space in a whole-body 3.0T magnet by increasing the radial separation between the primary and the shield coil windings to 18.6 cm. This required the removal of the standard whole-body gradient and radiofrequency coils. To achieve a coil efficiency ~4× that of whole-body gradients, a double-layer primary coil design with asymmetric x-y axes, and symmetric z-axis was used. The use of all-hollow conductor with direct fluid cooling of the gradient coil enabled ≥50 kW of total heat dissipation. RESULTS: This design achieved a coil efficiency of 0.32 mT/m/A, allowing 200 mT/m and 500 T/m/s for a 620 A/1500 V driver. The gradient coil yielded substantially reduced echo spacing, and minimum repetition time and echo time. In high b = 10,000 s/mm2 diffusion, echo time (TE) < 50 ms was achieved (>50% reduction compared with whole-body gradients). The gradient coil passed the American College of Radiology tests for gradient linearity and distortion, and met acoustic requirements for nonsignificant risk operation. CONCLUSIONS: Ultra-high gradient coil performance was achieved for head imaging without substantial increases in gradient driver power in a whole-body 3.0T magnet after removing the standard gradient coil. As such, any clinical whole-body 3.0T MR system could be upgraded with 3-4× improvement in gradient performance for brain imaging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Acústica , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Cabeza/diagnóstico por imagen , Humanos , Campos Magnéticos
3.
Magn Reson Med ; 80(5): 2232-2245, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29536587

RESUMEN

PURPOSE: To build and evaluate a small-footprint, lightweight, high-performance 3T MRI scanner for advanced brain imaging with image quality that is equal to or better than conventional whole-body clinical 3T MRI scanners, while achieving substantial reductions in installation costs. METHODS: A conduction-cooled magnet was developed that uses less than 12 liters of liquid helium in a gas-charged sealed system, and standard NbTi wire, and weighs approximately 2000 kg. A 42-cm inner-diameter gradient coil with asymmetric transverse axes was developed to provide patient access for head and extremity exams, while minimizing magnet-gradient interactions that adversely affect image quality. The gradient coil was designed to achieve simultaneous operation of 80-mT/m peak gradient amplitude at a slew rate of 700 T/m/s on each gradient axis using readily available 1-MVA gradient drivers. RESULTS: In a comparison of anatomical imaging in 16 patients using T2 -weighted 3D fluid-attenuated inversion recovery (FLAIR) between the compact 3T and whole-body 3T, image quality was assessed as equivalent to or better across several metrics. The ability to fully use a high slew rate of 700 T/m/s simultaneously with 80-mT/m maximum gradient amplitude resulted in improvements in image quality across EPI, DWI, and anatomical imaging of the brain. CONCLUSIONS: The compact 3T MRI system has been in continuous operation at the Mayo Clinic since March 2016. To date, over 200 patient studies have been completed, including 96 comparison studies with a clinical 3T whole-body MRI. The increased gradient performance has reliably resulted in consistently improved image quality.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen de Cuerpo Entero/instrumentación , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Femenino , Humanos , Imagenología Tridimensional , Imanes , Masculino , Fantasmas de Imagen , Relación Señal-Ruido
4.
Magn Reson Med ; 75(2): 897-905, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25772214

RESUMEN

PURPOSE: To design, build, and characterize the performance of a novel 3T, 31-channel breast coil. METHODS: A flexible breast coil, accommodating all breast sizes while preserving close to unity filling factors in all configurations, was designed and built. Its performance was compared to the performance of the current state-of-the-art, 16 channel breast coil (Sentinelle coil, Hologic, Bedford, MA, USA), in phantoms and in vivo. RESULTS: Better axilla coverage and lower inter-coil coupling (12% versus 26%, as characterized by the average off-diagonal elements of the noise correlation matrix) was exhibited by our 31-channel coil compared with the 16-channel coil. Breast area signal-to-noise ratio increases of 68% (phantom) and 28% ± 31% (in vivo) were observed when the 31-channel coil was used. For the 31-channel/16-channel arrays, respectively, two-dimensional acceleration factors of left/right × superior/inferior = 4.3 × 2.4 resulted in average g-factors of 1.10/1.68 (in vitro) and 1.28/2.75 (in vivo); acceleration factors of left/right × anterior/posterior = 3.0 × 2.8 resulted in average g-factors of 1.06/1.54 (in vitro) and 1.05/1.12 (in vivo). CONCLUSION: A high performance breast coil was built; its capabilities were demonstrated in phantom and normal volunteer imaging experiments.


Asunto(s)
Mama/anatomía & histología , Imagen por Resonancia Magnética/instrumentación , Diseño de Equipo , Femenino , Voluntarios Sanos , Humanos , Fantasmas de Imagen , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA